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Kapitel 2

The Four Pillars of the Standard
Model

In our fundamental research of elementary particle physics we are guided by the endeavour
to find answers to the fundamental questions of the Universe:

∗ What is it made of?

∗ How has it developped?

∗ Which are the building blocks of matter and which forces keep them together?

The status as of today is that we are able to

∗ break down known matter to a few fundamental particles;

∗ trace back the various interactions to fundamental forces between the particles;

∗ describe the physical laws mathematically with simple fundamental principles.

The Standard Model (SM) of Particle Physics, developed in the early 1970s, summarizes the
today known fundamental structures of matter and forces (except for gravity). It is the result
of theories and discoveries developed and made since the 1930s. The SM has been able to
explain almost all experimental results and furthermore it precisely predicted a wide variety
of phenomena. With precision experiments performed at previous and current colliders, the
SM has been established as a physics theory tested to highest precision at the quantum level.
With the discovery of the Higgs boson we now have a consistent mathematical framework
to describe physics all the way up to the Planck scale.

The SM is based on four pillars:

∗ The local gauge symmetry group SU(3)C × SU(2)L × U(1)Y .

∗ Its particle content with 12 matter particles and the gauge/interaction particles of the
fundamental forces.

∗ The fundamental forces given by the strong and the electroweak force.

∗ The Higgs mechanism for the generation of particle masses without violating gauge
invariance.
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Kapitel 3

On our Way to the SM - Gauge
Symmetries

Quantum field theory (QFT) provides the mathematical framework to describe elementary
particles and their interactions. In QFT, we combine the principles of classical field theory
and quantum mechanics. The Lagrangian of the QFT controls the dynamics and kinematics
of the theory. Particles are described in terms of a dynamical field. In order to construct the
Lagrangian of a theory, namely of the Standard Model, we proceed as follows: After first
postulating the set of symmetries of the system, the most general renormalizable Lagrangian
is constructed from the particle/field content of the system, that fulfills these symmetries.

The Lagrangian for all relativistic quantum field theories has to observe the global Poin-
caré symmetry. Poincaré transformations P in Minokowski space consist of a Lorentz trans-
formation Λµν and a translation by aµ,

P = {xµ → x
′µ = Λµνx

ν + aµ : Λµν ∈ L, aµ ∈ R
4} . (3.1)

Local gauge symmetry is an internal symmetry of the Lagrangian. We know such a gauge
theory already, namely Maxwell’s theory of electromagnetic interactions. The fact that we
have the freedom to choose many potentials that describe the same electromagnetic fields is
called gauge invariance. The gauge invariance of electromagnetism can be phrased in terms
of a continuous symmetry of the Lagrangian. It leads through Noether’s theorem1 to the con-
servation of the electric charge and other important consequences. Noether’s theorem states
that for each symmetry of the action integral with respect to a continuous transformation
exists a conservation law that can be derived from the Lagrangian. In accordance with the
principle of local action we require the symmetry transformations of the fields rather to be
local than global. We will see that this implies the gauge principle.

The gauge principle is the procedure to obtain an interaction term from a free Lagrangian
that is symmetric with respect to a continous symmetry: When the global symmetry group
is made local this has to be accompanied by the inclusion of additional fields with kinetic
and interaction terms in the action in such a way that the resulting extended Lagrangian is
covariant (i.e. the form of the physical laws does not change) with respect to a new extended
group of local transformations.

1Emmi Noether was an German mathematician (1882-1935) who made fundamental contributions to
abstract algebra and theoretical physics.
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Let us look at the example of quantum electrodynamics. We start with the Dirac Lagran-
gian of a free fermion field Ψ with mass m. It is given by

L0 = Ψ̄(iγµ∂µ −m)Ψ . (3.2)

It is symmetric with respect to a global U(1) transformation given by

Ψ(x)→ exp(−iα)Ψ(x) = Ψ− iαΨ+O(α2) . (3.3)

And for the adjoint spinor Ψ̄ = Ψ†γ0 we have

Ψ̄(x)→ exp(iα)Ψ̄(x) . (3.4)

The Noether current associated with this symmetry is

jµ =
∂L0

∂(∂µΨ)

δΨ

δα
+
δΨ̄

δα

∂L0

∂(∂µΨ̄)
= iΨ̄γµ(−iΨ) = Ψ̄γµΨ , (3.5)

where

∂µj
µ = 0 . (3.6)

When we also consider the coupling to a photon, the Lagrangian reads

L = Ψ̄γµ(i∂µ − qAµ)Ψ−mΨ̄Ψ = L0 − qjµAµ , (3.7)

with jµ given in Eq. (3.5). The kinetic Lagrangian of the photon field

Lkin = −1
4
FµνF

µν with F µν = ∂µAν − ∂νAµ (3.8)

is invariant under the local gauge transformation of the external photon field Aµ,

Aµ(x)→ A′
µ(x) = Aµ(x) + ∂µΛ(x) . (3.9)

When we apply this gauge transformation to the Lagrangian Eq. (3.7) it becomes

L → L = L0 − qjµAµ − qjµ∂µΛ
︸ ︷︷ ︸

qΨ̄γµΨ∂µΛ

. (3.10)

This means that L is not gauge invariant. The gauge transformations of the fields Ψ and Ψ̄
must be changed in such a way that the Lagrangian becomes gauge invariant. This is done
by localizing the transformation Eq. (3.3), i.e. by introducing an x-dependent parameter α,
hence α = α(x). By this we obtain

i∂µΨ→ i exp(−iα)∂µΨ+ exp(−iα)Ψ(∂µα) , (3.11)

so that

L0 → L0 + Ψ̄γµΨ∂µα . (3.12)

This term cancels the additional term in Eq. (3.10) if

α(x) = qΛ(x) . (3.13)
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Thereby the complete local gauge transformation is given by

Ψ → Ψ′(x) = U(x)Ψ(x) with U(x) = exp(−iqΛ(x)) (U unitary)(3.14)

Ψ̄ → Ψ̄′(x) = Ψ̄(x)U †(x) (3.15)

Aµ(x) → Aµ(x) + ∂µΛ(x) = U(x)Aµ(x)U
†(x)− i

q
U(x)∂µU

†(x) . (3.16)

The Lagrangian is tranformed as (U † = U−1)

L → L′ = Ψ̄γµU−1i∂µ(UΨ)− qΨ̄U−1γµ
(

UAµU
−1 − i

q
U∂µU

−1

)

UΨ−mΨ̄U−1UΨ

= Ψ̄γµi∂µΨ+ Ψ̄γµ(U−1i(∂µU))Ψ− qΨ̄γµΨAµ + Ψ̄γµ(i(∂µU
−1)U)Ψ−mΨ̄Ψ

= L+ iΨ̄γµ∂µ(U
−1U
︸ ︷︷ ︸

1

)Ψ = L . (3.17)

Minimal substitution pµ → pµ − qAµ leads to

i∂µ → i∂µ − qAµ ≡ iDµ . (3.18)

Here Dµ(x) is the covariant derivative. The expression covariant means, it transforms as the
field does,

Ψ(x)→ U(x)Ψ(x) and DµΨ(x)→ U(x)(DµΨ(x)) . (3.19)

This implies

(DµΨ)′ = D′
µΨ

′ = D′
µUΨ

!
= UDµΨ , (3.20)

so that the covariant derivative transforms as

D′
µ = UDµU

−1 = exp(−iqΛ)(∂µ + iqAµ) exp(iqΛ) = ∂µ + iq∂µΛ + iqAµ
(3.9)
= ∂µ + iqA′

µ .

(3.21)

Thereby

L = Ψ̄γµiDµΨ−mΨ̄Ψ (3.22)

is obviously gauge invariant.

As stated above the kinetic Lagrangian of the photons is given by

Lkin = −1
4
FµνF

µν with F µν = ∂µAν − ∂νAµ . (3.23)

The field strength tensor F µν can be expressed in terms of the covariant derivative (verify!):
We choose the following ansatz for the tensor of rank 2,

[Dµ, Dν] = [∂µ + iqAµ, ∂ν + iqAν ] = iq[∂µ, Aν ] + iq[Aµ, ∂ν ] = iq(∂µAν − ∂νAµ) . (3.24)

Thereby we have for the field strength tensor

F µν =
−i
q
[Dµ, Dν] . (3.25)

It behaviour under transformation is given by

−i
q
[UDµU−1, UDνU−1] =

−i
q
U [Dµ, Dν]U−1 = UF µνU−1 . (3.26)
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3.1 Non-Abelian Gauge Groups

We now extend the considerations about local gauge invariance to gauge groups that are
more complicated than the group of phase rotations. We will see that it is possible to have
local gauge invariance by following the same strategy as the one applied for electrodynamics.
Apart from being more complex, the basic difference will be the emergence of interactions
among the gauge bosons as consequence of the non-Abelian nature of the gauge symmetry.

The motivation of introducing the more complicated structure is given e.g. by the fact
that the near degeneracy of the neutron and proton masses, the charge-independence of the
nuclear forces and subsequent observations suggested the notion of isospin conservation in
the strong interactions. This means that the physics laws should be invariant under rotati-
ons in isospin space and hence the proton and neutron should appear symmetrically in all
equations. In other words, if electromagnetism can be neglected the isospin orientation is of
no significance and thereby the distinction between proton and neutron becomes entirely a
matter of arbitrary convention. The existence of two distinct kinds of nucleons could then
be inferred from the properties of the ground state of the 4He nucleus. The free-nucleon
Lagrangian would then be given by

L0 = Ψ̄(iγµ∂µ −m)Ψ (3.27)

in terms of the composite fermion fields

Ψ =

(
p
n

)

. (3.28)

We generalize this to N Dirac fields ψi of mass m. We have the Lagrangian

L =
∑

j=1...N

ψ̄jiγ
µ∂µψj −m

∑

j=1...N

ψ̄jψj . (3.29)

The Lagrangian is symmetric under U(N) where U(N) is the group of unitary N × N
matrices. We consider the following transformation

ψj →
∑

k=1...N

Ujkψk ≡ Ujkψk , (3.30)

where we have used in the last equation the Einstein sum convention, i.e. that we sum over
repeated indices. We hence have

Ψ→ UΨ with Ψ =








ψ1

ψ2
...
ψN








, hence








ψ1

ψ2
...
ψN







→








U1kψk
U2kψk

...
UNkψk








(3.31)

and

L = Ψ̄iγµ∂µΨ−mΨ̄Ψ→ Ψ̄U−1iγµ∂µUΨ−mΨ̄U−1UΨ = L . (3.32)

Examples are:

• Ψ =

(
p
n

)

: SU(2)-transformations in isospin space, proton-neutron doublet.
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• Ψ =

(
νe
e

)

L

: SUL(2), weak interaction acting on left-handed fermions.

• Ψ = (q1, q2, q3)
T , quarks, SU(3). Here each qi (i = 1, 2, 3) is a four-component spinor.

The Lagrangian is invariant under SU(3) transformations.

3.2 The Matrices of the SU(N)

We now consider the matrices of the special unitary group SU(N) which consists of the
unitary N × N matrices with complex entries and determinant +1. It is a subgroup of the
U(N). The elements of the SU(N) can be represented through

U = exp

(

iθa
λa

2

)

with θa ∈ R . (3.33)

The λa/2 are the generators of the group SU(N). For the SU(2) the λa are given by the
Pauli matrices σi (i = 1, 2, 3) and θa is a 3-component vector. For an element of the group
SU(2) we hence have

U = exp

(

i~ω
~σ

2

)

. (3.34)

For a general U we have

U † = exp

(

−iθa
(
λa

2

)†
)

!
= U−1 = exp

(

−iθaλ
a

2

)

. (3.35)

The generators must hence be Hermitean, i.e.

(λa)† = λa . (3.36)

Furthermore, for the SU(N) we have

det(U) = 1 . (3.37)

With

det(exp(A)) = exp(Tr(A)) (3.38)

we have

det

(

exp

(

iθa
λa

2

))

= exp

(

iθaTr

(
λa

2

))

!
= 1 . (3.39)

This implies

Tr(λa) = 0 . (3.40)
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The generators of the SU(N) must be traceless. The group SU(N) has N2 − 1 generators
λa with Tr(λa) = 0. For the SU(3) these are the Gell-Mann matrices

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 . (3.41)

The matrices λa/2 are normalized as

Tr

(
λa

2

λb

2

)

=
1

2
δab . (3.42)

For the Pauli matrices we have (i = 1, 2, 3)

Tr(σ2
i ) = 2 and Tr(σ1σ2) = Tr(iσ3) = 0 . (3.43)

Multiplied by 1/2 they are the generators of the SU(2). The generator matrices fulfill the
completeness relation

λaij
2

λakl
2

=
1

2

(

δilδkj −
1

N
δijδkl

)

, (3.44)

because

0
!
=
λaii
2

λakl
2

=
1

2
δilδki −

1

2N
δiiδkl =

1

2
δkl −

1

2
δkl = 0 . (3.45)

3.3 Representations of Non-Abelian Gauge Groups

Be G a group with the elements g1, g2... ∈ G. An n-dimensional representation of G is given
by the map G→ C(n,n), g → U(g). We have hence the map of abstract elements of the group
onto complex n× n matrices so that U(g1g2) = U(g1)U(g2) holds and the properties of the
group are preserved. A U ∈ SU(N) can be written as U = exp(iθaT a). For the SU(2) we

hence have U = exp(i~ω · ~J). The group SU(N) has N2 − 1 generators T a. For the SU(2)
these are the angular momentum operators Ji. The N

2 − 1 real parameters θa of the SU(2)
are given by ~ω. The fundamental representation of the SU(2) is given by Ji = σi/2. In the
general case we have T a = λa/2. The generators fulfill the following commutation relation

[T a, T b] = ifabcT c . (3.46)

The fabc are the structure constants of the SU(N) Lie algebra. They are totally antisymme-
tric and define (N2 − 1)(N2 − 1) dimensional matrices T alk ≡ −ifalk ≡ −ifalk. In case of the
SU(2) we have

[Ji, Jj] = ǫijkJk . (3.47)
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Furthermore, we have

Tr

([
λa

2
,
λb

2

]
λc

2

)

= ifabeTr

(
λe

2

λc

2

)

= ifabe
1

2
δec =

i

2
fabc . (3.48)

The generators fulfill the Jacobi identity

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0 . (3.49)

Applying Eq. (3.46) we obtain

0 = (−if bcl)(−ifalk) + (−ifalc)(−if blk) + ifabl(−if lck) . (3.50)

And hence

0 = (T bT a)ck − (T aT b)ck + ifabl(T l)ck . (3.51)

Thereby we have obtained an N2 − 1 representation of the SU(N) Lie algebra,

[T a, T b] = ifabcT c . (3.52)

This is the adjoint representation. We have the following SU(N) representaions

• d = 1: trivial representation (singlet).

• d = N : fundamental representation (λa/2), anti-fundamental representation (−λ∗a/2).

• d = N2 − 1: adjoint representation.

3.4 Non-Abelian Gauge Transformations

Our starting point is the Lagrangian

L =
∑

i=1...N

ψ̄i(iγ
µ∂µ −m)ψi = Ψ̄(iγµ∂µ −m)Ψ with Ψ̄ = (ψ̄1, ψ̄2, ..., ψ̄N ) . (3.53)

The Lagrangian is invariant under a global SU(N) gauge transformation

Ψ→ Ψ′ = exp (iθaT a) Ψ =
(
1 + iθaT a +O((θa)2)

)
Ψ = UΨ and Ψ̄→ Ψ̄′ = Ψ̄U−1 .(3.54)

The generators T a are

fundamental representation: (T a)ij =
(
λa

2

)

ij
d = N

adjoint representation (T a)bc = −ifabc d = N2 − 1
trivial representation T a = 0⇔ U(θ) = 1 .

(3.55)

We now consider local symmetries, hence θa = θa(x). The transformation of Ψ be Ψ′ = UΨ.
We introduce the covariant derivative

Dµ = ∂µ − igAµ = ∂µ − igT aAaµ . (3.56)

The T a can change, but Aaµ is identical in all Dµ. Example supersymmetry (SUSY):

squark, quark T a = λa

2
(d = N)

gluino (T a)bc = −ifabc (d = N2 − 1)
(3.57)
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The covariant derivative transforms in the same way as Ψ, hence (DµΨ)′ = U(DµΨ). We
have

(DµΨ)′ = D′
µΨ

′ = D′
µUΨ⇒ D′

µU = UDµ (3.58)

This is fufilled if

∂µ − igA′
µ = D′

µ = UDµU
−1 = U(∂µ − igAµ)U−1 = UU−1∂µ + U(∂µU

−1)− igUAµU−1 ⇒
(3.59)

A′
µ =

i

g
U(∂µU

−1) + UAµU
−1 , (3.60)

with the A′a
µ being independent of the representation of U . With infinitesimal

U = exp(iT aθa) = 1 + iT aθa +O(θa2) (3.61)

we have

A′
µ = A′b

µT
b =

i

g
U(−i)T a (∂µθa)U−1 + (1 + iθaT a)AcµT

c(1− iθbT b)
︸ ︷︷ ︸

Ac
µT

c+iAc
µ (T

aT c − T cT a)
︸ ︷︷ ︸

ifacbTb

θa

= T b (
1

g
∂µθ

b + Abµ + i(−ifabc)θaAcµ)
︸ ︷︷ ︸

A′b
µ

. (3.62)

The field strength tensor be defined through F µν ∼ [Dµ, Dν]. We consider the commutator

[Dµ, Dν ] = [∂µ − igT aAaµ, ∂ν − igT bAbν ] = −igT b∂µAbν − igT a(−∂νAaµ) + (−ig)2AaµAbν [T a, T b]
︸ ︷︷ ︸

ifabcT c

= −igT a (∂µAaν − ∂νAaµ + g f bca
︸︷︷︸

fabc

AbµA
c
ν)

︸ ︷︷ ︸

=:F a
µν

= −igT aF a
µν = −igFµν . (3.63)

The F a
µν are independent of the representation of T a. We find for their transformation beha-

viour

F ′
µν =

i

g
[D′µ, D′ν ] =

i

g
[UDµU

−1, UDνU
−1] = UFµνU

−1 homogeneous transformation .(3.64)

And with Eq. (3.62)

(F a
µν)

′ = F a
µν + i(−if bac)θbF c

µν + ... (3.65)

This means that F a
µν transforms homegeneously under the adjoint representation. Further-

more, it follows that

F aµνF a
µν = 2Tr(FµνF

µν)




= 2Tr(F aµνT aF b

µνT
b) = 2F aµνF b

µν Tr(T
aT b)

︸ ︷︷ ︸
1
2
δab

= F µνaF a
µν






is gauge invariant. (3.66)
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With this we have for the kinetic Lagrangian

Lkin,A = −1
4
F aµνF a

µν = −
1

2
Tr(F µνFµν) . (3.67)

Note that due to the non-linear term in F a
µν we have trilinear and quartic terms in the gauge

fields, hence trilinear and quartic interactions among the gauge fields themselves. These
additional interactions have important physical consequences.

3.5 Chiral Gauge Theories

We consider

Lf = Ψ̄(iγµDµ −m)Ψ . (3.68)

In the chiral representation the 4× 4 γ matrices are given by

γµ =

((
0 1

1 0

)

,

(
0 −~σ
~σ 0

))

=

(
0 σµ−
σµ+ 0

)

(3.69)

γ5 =

(
1 0
0 −1

)

, (3.70)

where σi (i = 1, 2, 3) are the Pauli matrices. With

Ψ =

(
χ
ϕ

)

and Ψ̄ = Ψ†γ0 = (χ†, ϕ†)

(
0 1

1 0

)

= (ϕ†, χ†) (3.71)

we have

Ψ̄iγµDµΨ = i(ϕ†, χ†)

(
0 σµ−
σµ+ 0

)(
Dµχ
Dµϕ

)

︸ ︷︷ ︸




σµ−Dµϕ
σµ+Dµχ





= ϕ†iσµ−Dµϕ+ χ†iσµ+Dµχ . (3.72)

The gauge interaction independently applies for

ΨL =

(
0
ϕ

)

=
1

2
(1− γ5)Ψ and ΨR =

(
χ
0

)

=
1

2
(1+ γ5)Ψ . (3.73)

The ΨL and ΨR can have independent gauge representations. But

mΨ̄Ψ = m(ϕ†, χ†)

(
χ
ϕ

)

= m(ϕ†χ+ χ†ϕ) = m(Ψ̄LΨR + Ψ̄RΨL) . (3.74)

The mass term mixes ΨL and ΨR. This implies symmetry breaking if ΨL and ΨR have different
representations.

What about the mass term for gauge bosons? We consider

L = −1
4

F aµνF a
µν

︸ ︷︷ ︸

gauge indep.

+
m2

2
AaµAaµ
︸ ︷︷ ︸

not gauge indep.

. (3.75)

For example for the U(1)

(AµA
µ)′ = (Aµ + ∂µθ)(A

µ + ∂µθ) = AµA
µ + 2Aµ∂

µθ + (∂µθ)(∂
µθ) . (3.76)

The mass term for Aµ breaks the gauge symmetry.
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3.6 Example: The QCD Lagrangian

Quantum chromodynamics (QCD) is invariant under the colour SU(3). The 6 quark fields
carry colour charge and are in the fundamental representation

Ψq =





ψq1
ψq2
ψq3



 q = u, d, c, s, t, b . (3.77)

They form triplets. The 8 gluons Gµ are in the adjoint representation The QCD Lagrangian
is given by

LQCD = −1
4
GaµνGa

µν +
∑

q=1...6

Ψ̄q(iγ
µDµ −mq)Ψq , (3.78)

with

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gfabcGb
µG

c
ν . (3.79)



Kapitel 4

Spontaneous Symmetry Breaking

We have seen in the previous discussion how gauge principles can serve as a dynamical
principle to guide the construction of theories. Global gauge invariance implies via Noether’s
theorem the existence of a conserved current. Local gauge invariance requires the introduction
of massless vector gauge bosons, fixes the form of the interactions of gauge bosons with
sources and implies interactions among the gauge bosons in case of non-Abelian symmetries.
We face the problem, however, that the gauge principle leads to theories in which all the
interactions are mediated by massless vector bosons while only the photon and the gluons are
massless and the vector bosons mediating the weak interactions, the W and Z bosons, are
massive. We discuss in the following how this problem is solved by spontaneous symmetry
breaking.

The symmetry of a Lagrangian is called spontaneously broken if the Lagrangian is sym-
metric but the physical vacuum does not conserve the symmetry. We will see that, if the
Lagrangian of a theory is invariant under an exact continuous symmetry that is not the
symmetry of the physical vacuum one or several massless spin-0 particles emerge. These are
called Goldstone bosons. If the spontaneously broken symmetry is a local gauge symmetry
the interplay (induced by the Higgs mechanism) between the would-be Goldstone bosons and
the massless gauge bosons implies masses for the gauge bosons and removes the Goldstone
bosons from the physical spectrum.

4.1 Example: Ferromagnetism

We consider a system of interacting spins,

H = −
∑

i,j

Jij ~Si · ~Sj . (4.1)

The scalar product of the spin operators is a singlet with respect to rotations, i.e. rotation
invariant. In the ground state of the ferromagnet (at sufficiently low temperature, below the
Curie temperature) all spins are orientated along the same direction. This is the state with
lowest energy. The ground state is no longer rotation invariant. Rotation of the system leads
to a new ground state of same energy, which is different from the previous one, however. The
ground state is degenerate. The distinction of a specific direction breaks the symmetry. We
have spontaneous symmetry breaking here.

15
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V (φ)

φ0

φ+

Abbildung 4.1: Das Higgspotential.

4.2 Example: Field Theory for a Complex Field

We consider the Lagrangian for a complex scalar field

L = (∂µφ)
∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2 with the potential V = µ2φ∗φ+ λ(φ∗φ)2 . (4.2)

(Adding higher powers in φ leads to a non-renormalizable theory.) The Lagrangian is inva-
riant under a U(1) symmetry,

φ→ exp(iα)φ . (4.3)

We consider the ground state. It is given by the minimum of V ,

0 =
∂V

∂φ∗ = µ2φ+ 2λ(φ∗φ)φ ⇒ φ =

{
0 für µ2 > 0

φ∗φ = −µ2

2λ
für µ2 < 0

(4.4)

The parameter λ has to be positive so that the system does not become unstabel. For µ2 < 0
the potential takes the shape of a Mexican hat, see Fig. 4.1. At φ = 0 we have a local
maximum, at

|φ| = v =

√

−µ
2

2λ
(4.5)

a global minimum. Particles correspond to harmonic oscillations for the expansion about the
minimum of the potential. Fluctuations into the direction of the (infinitely many degenerate)
minima have the gradient zero and correspond to massless particles, the Goldstone bosons.
Fluctuations perpendicular to this direction correspond to particles with mass m > 0. Ex-
pansion around the maximum at φ = 0 would lead to particles with negative mass (tachyons),
as the curvature of the potential is negative here.

Expansion about the minimum at φ = v leads to (we have two fluctuations ϕ1 and ϕ2 for
the complex scalar field)

φ = v +
1√
2
(ϕ1 + iϕ2) =

(

v +
1√
2
ϕ1

)

+ i
ϕ2√
2
⇒ (4.6)

φ∗φ = v2 +
√
2vϕ1 +

1

2
(ϕ2

1 + ϕ2
2) . (4.7)
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Thereby we obtain for the potential

V = λ(φ∗φ− v2)2 − µ4

4λ
with v2 = −µ

2

2λ
⇒ (4.8)

V = λ

(√
2vϕ1 +

1

2
(ϕ2

1 + ϕ2
2)

)2

− µ4

4λ
. (4.9)

We neglect the last term in V as is is only a constant shift of the zero-point. We then obtain
for the Lagrangian

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − 2λv2ϕ2
1 −
√
2vλϕ1(ϕ

2
1 + ϕ2

2)−
λ

4
(ϕ2

1 + ϕ2
2)

2 . (4.10)

The terms quadratic in the fields provide the masses, the terms kubic and quartic in the
fields are the interaction terms. We have a massive and a massless particle,

mϕ1 = 2v
√
λ and mϕ2 = 0 . (4.11)

The massless particle is the Goldstone boson.

4.3 The Goldstone Theorem

The Goldstone theorem states:

In any field theory that obeys the ’usual axioms’ including locality, Lorentz invariance and
postive-definite norm on the Hilbert space, if an exact continuous symmetry of the Lagranian
is not a symmetry of the physical vacuum, then the theory must contain a massless spin-zero
particle (or particles) whose quantum numbers are those of the broken group generator (or
generators).

Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian.
M = dimension of the algebra of the group under which the vacuum is

invariant after spontaneous symmetry breaking.

⇒ There are N-M Goldstone bosons without mass in the theory.

For each spontaneously broken degree of freedom of the symmetry there is a massless Gold-
stone boson.

4.4 Spontaneously broken Gauge Symmetries

We consider as example the Lagrangian of a complex sclar field Φ that couples to a photon
field Aµ, that is invariant under a U(1). The local transformations are given by

Φ→ exp(−ieΛ(x))Φ(x) and Aµ → Aµ + ∂µΛ . (4.12)

The Lagrangian reads

L = [(∂µ − ieAµ)Φ∗][(∂µ + ieAµ)Φ]−µ2Φ∗Φ− λ(Φ∗Φ)2
︸ ︷︷ ︸

−V (Φ)

−1
4
FµνF

µν . (4.13)
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(Remark: In order to quantize the Lagrangian we additionally have to introduce a gauge
fixing term.) For µ2 < 0 we have spontaneous symmmetry breaking of the U(1). Then the
field has a non-vanishing VEV,

< 0|Φ|0 >= v =

√

−µ2

2λ
. (4.14)

The fluctuations around the minimum (expansion around the minimum) are given by

Φ = v +
1√
2
(ϕ1 + iϕ2) =

(

v +
H(x)√

2

)

exp

(
i√
2

χ(x)

v

)(

≈ v +
1√
2
(H(x) + iχ(x))

)

.(4.15)

Thereby

DµΦ = (∂µ + ieAµ)Φ(x) =
1√
2
(∂µϕ1 + i∂µϕ2) + ieAµv +

e√
2
Aµ(−ϕ2 + iϕ1)

= exp

(

i
χ√
2v

)[

∂µ + ie

(

Aµ +
∂µχ√
2ev

)](

v +
H√
2

)

. (4.16)

In order to avoid bilinear mixing terms in the fields we perform the following gauge trans-
formation

A′
µ = Aµ + ∂µ

(
χ√
2ev

)

. (4.17)

This results in the kinetic energy (from now on we call A′ again A)

(DµΦ)
∗(DµΦ) =

1

2
(∂µH)(∂µH) + e2AµA

µ

(

v +
H√
2

)2

=
1

2
(∂µH)(∂µH) + (e2v2)

︸ ︷︷ ︸
1
2
m2

A

AµA
µ

+ e2AµA
µ

(√
2vH +

H2

2

)

︸ ︷︷ ︸

interaction terms

. (4.18)

And the complete Lagrangian reads

L = =
1

2
(∂µH)(∂µH) +

1

2
m2
AAµA

µ + e2AµA
µ

(√
2vH +

H2

2

)

−1
4
FµνF

µν − 2λv2
︸︷︷︸
1
2
m2

H

H2 −
√
2vλH3 − λ

4
H4 . (4.19)

Here we have neglected the constant term λv4 which simply shifts the zero-point of the
vacuum. The masses of the Higgs particle H and the photon are

m2
A = 2e2v2 (4.20)

m2
H = 4λv2 . (4.21)

We hence have a massive photon (gauge boson) and a massive scalar field, the Higgs particle.
The Goldstone boson does not appear any more as degree of freedom. The number of degrees
of freedom has been preserved, however. Because in the unbroken U(1) symmetry the photon
is massless and has 2 physical degrees of freedom, the two transversal polarisations. The
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complex scalar field Φ has two degrees of freedom. When U(1) is broken we have a massive
photon with 3 degrees of freedom (including longitudinal polarisation) and a massive real
Higgs particle with one degree of freedom. The Goldstone boson has been eaten to give
mass to the photon, i.e. to provide the longitudinal degree of freedom of the massive gauge
particle.

We summarise: In gauge theories Goldstone bosons do not appear. They are would-be)
Goldstone bosons. Through spontaneous symmetry breaking they are directly absorbed into
the longitudinal degrees of freedom of the massive gauge bosons. In gauge theories we have
the following: Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian.
M = dimension of the algebra of the group under which the vacuum is

invariant after spontaneous symmetry breaking.
n = The number of the scalar fields.

⇒
There are M massless vector fields. (M is the dimension of the symmetry of the vacuum.)
There are N −M massive vector fields. (N −M is the number of broken generators.)
There are n− (N −M) scalar Higgs fields.

The reason is that gauge theories do not satisfy the assumptions on which the Goldstone
theorem is based. To quantize electrodynamics, for example, one must choose between the
Gupta-Bleuler formalism with its unphysical indefinite metric states or quantization in a
physical gauge wherein manifest covariance is lost.

4.5 Addendum: Goldstone Theorem - Classical Field

Theory

Proof of the Goldstone theorem in classical field theory:

The Lagrangian

L =
1

2
(∂ϕ)2 − V (ϕ) (4.22)

is invariant under the rotation

ϕ→ e−iαaRaϕ a = 1, ..., N , (4.23)

which can infinitesimally be written as

ϕ→ ϕ− iαRϕ (4.24)

From the invariance it follows that

δV =
∂V

∂ϕ
δϕ = −iα∂V

∂ϕ
Rϕ = 0 ∀α, ϕ (4.25)

so that

∂2V

∂ϕ∂ϕ
Rϕ +

∂V

∂ϕ
R = 0 (4.26)
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After spontaneous symmetry breaking we have the ground state

∂V

∂ϕ
= 0 for ϕ = v 6= 0 (4.27)

from which follows the Goldstone equation:
∂2V

∂ϕ∂ϕ
= 0 for ϕ = v (4.28)

and

∂2V

∂ϕ∂ϕ
≡M2 (4.29)

is the mass matrix of the system. Expanding ϕ about the ground state

ϕ = v + ϕ′ (4.30)

we have
0

L =
1

2
(∂ϕ)2 − [V (v) +

︷︸︸︷

∂V

∂ϕ
ϕ′ +

1

2
ϕ′ ∂

2V

∂ϕ∂ϕ
ϕ′ + ...]

=
1

2
(∂ϕ′)2 − 1

2
ϕ′ ∂

2V

∂ϕ∂ϕ
ϕ′ + ... (4.31)

The Goldstone equation is thus the condition equation for the masses

M2Rv = 0 (4.32)

• The equation is fulfilled if the generators Ra, a = 1, 2, ...,M leave the vacuum invariant:
Rav = 0.

• The remaining generators Ra, a = M + 1, ..., N form a set of linearly independent
vectors Rav. These are eigen-vectors of the zero-eigenvalues of the mass matrix M2.
The zero-eigenvalue is hence N −M times degenerated. Q.e.d.
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The Standard Model of Particle
Physics

The Standard Model of particle physics describes the today known basic building blocks of
matter and (except for gravity) its interactions. These are the electromagnetic and the weak
(the electroweak) and the strong interaction.

Before going into details we give a short historical overview of the steps towards the deve-
lopment of the electroweak theory by Sheldon Glashow, Abdus Salam and Steven Weinberg
(1967).

5.1 A Short History of the Standard Model of Particle

Physics

- Weak interaction: β decay [A. Becquerel 1896, Nobel Prize 19031]

Antoine Henri Becquerel (15.12.1852 - 25.8.1908) was a French physicist, Nobel Prize
winner and discovered radioactivity.

In 1896, while investigating fluorescence in uranium salts, Becquerel discovered radio-
activity accidentally. Investigating the work of Wilhelm Conrad Röntgen, Becquerel
wrapped a fluorescent mineral, potassium uranyl sulfate, in photographic plates and
black material in preparation for an experiment requiring bright sunlight. However,
prior to actually performing the experiment, Becquerel found that the photographic
plates were fully exposed. This discovery led Becquerel to investigate the sponaneous
emission of nuclear radiation.

In1903 he shared the Nobel Prize with Marie and Pierre Curie “in recognition of the
extraordinary services he has rendered by his discovery of spontaneous radioactivity”.

N → N ′ + e− violates energy and angular momentum conservation

Lise Meitner and Otto Hahn showed in 1911 that the energy of the emitted electrons
is continuous. Since the released energy is constant, one had expected a discrete spec-
trum. In order to explain this obvious energy loss (and also the violation of angular
momentum conservation) Wolfgang Pauli proposed in 1930 in his letter of Dec 4 to the

1shared with Marie and Pierre Curie

21
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“Dear radioactive ladies and gentlemen” (Lise Meitner et al.) the participation of a
neutral, extremely light elementary particle (no greater than 1% the mass of a proton)
in the decay process, which he called “neutron”. Enrico Fermi changed this name 1931
in “neutrino”, as a diminuation form of the nearly at the same time discovered heavy
neutron.

Lise Meitner (7. 11.1878 - 27.10.1968) was an Austrian physicist who investigated
radioactivity and nuclear physics. Otto Hahn (8.3.1879 - 28.7.1968) was a German
chemist and received in 1944 the Nobel Prize in chemistry. Wolfgang Ernst Pauli
(25.4.1900 - 15.12.1958) was an Austrian physicist.

- The neutrino hypothesis: [W. Pauli 1930, Nobel Prize 1945]

N → P + e− + ν̄e
Spin = 1/2, Mass ≈ 0

In 1956 Clyde Cowan and Frederick Reines suceeded in the first experimental proof of
the neutrino in one of the first big nuclear reactors.

Clyde Lorrain Cowan Jr (6.121919 - 24.5.1974) discoverd together with Frederick Rei-
nes the neutrino. Frederick Reines (6.3.1918 - 26.8.1998) was an American physicist
and won in 1995 the Nobel Prize of phycsics in the name of the two of them

- Proof of Neutrino:

N → P + e− + ν̄e ν̄e + P → N + e+

The neutrino could be verified experimentally 1956 by Clyde L. Cowan and Frederick Reines
in the inverse β decay (ν̄e + p → e+ + n) at a nuclear reactor, which causes a much higher
neutrino flux as radioactive elements in the β decay. (Nobel prize to Reines alone 1995, since
Cowan died 1974.)
The muon neutrino was discovered 1962 by Jack Steinberger, Melvin Schwartz and Leon
Max Lederman with the first produced neutrino beam at an accelerator. All three physicists
received 1988 the Nobel Prize for their basic experiments about neutrinos - weakly interaction
elementary particles with vanishing or very small rest mass.
In 2000, the tau-neutrino was found in the DONUT-experiment.

- The Fermi Theory [E. Fermi, Nobel Prize 1938]

Enrico Fermi developed a theory of weak interactions in analogy to quantum electrodynamics
(QED), where four fermions directly interact with each other:

Leff = GF√
2
JµJ

µ

[For small momentum tranfers the reactions can be approximated by a point-like interaction.]

Enrico Fermi (29.9.1901 - 28.11.1954) was an Itaiian physicist He received the Nobel
Prize for physics in 1938 for his work on induced radioactivity’.

The Fermi interaction consists of 4 fermions directly interacting with each other. For
example a neutron (or down quark) can split into an electron, anti-neutrino and proton
(or up quark). Tree-level Feynman diagrams describe this interaction remarkably well.
However, no loop diagrams can be taken into account, since the Fermi interaction is
not renormalizable. The solution consists in replacing the 4-fermion interaction by a
more complete theory - with an exchange of a W or Z boson like in the electroweak
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theory. This is then renormalizable. Before the electroweak theory was constructed
George Sudarshan and Robert Marshak, and independently also Richard Feynman
and Murray Gell-Mann were able to determine the correct tensor structure (vector
minus axialvector V − A) of the 4-Fermi interaction.

- Die Yukawa Hypothesis: [H. Yukawa, Nobel Prize 1949 for ’his prediction of mesons based
on the theory of nuclear forces’]

The pointlike Fermi coupling is the limiting case of the exchange of a “heavy photon” → W
boson.

GF√
2
pointlike coupling ≈ g2

m2
W+Q2 ≈ g2

m2
W

with exchange of a W−boson

Hideki Yukawa (23.1.1907 - 8.9.1981) was a Japanese theoretical physicist and the first
Japanese to win the Nobel Prize.

Hideki Yukawa established the hypothesis, that nuclear forces can be explained through
the exchange of a new hypothetic particle between the nucleons, in the same manner as
the electromagnetic force between two electrons can well be described by the exchange
of photons. However, this particle exchanging the nuclear force should not be massless
(as are the photons), but have a mass of 100 GeV. This value can be estimated from the
range of the nuclear forces: the bigger the mass of the particle, the smaller the range of
the interaction transmitted by the particle. A plausible argument for this connection
is given by the energy-time uncertainty principle.

- Parity violation in the weak interaction [T.D. Lee, C.N. Yang, Nobel Prize 1957,
und C.-S. Wu]

The τ − θ puzzle: Initially there were known two different positively charged mesons with
strangeness (S 6= 0). These were distinguished based on their decay processes:

Θ+ → π+π0 P2π = +1

τ+ → π+π+π− P3π = −1
The final states of these two reactions have different parity. Since at that time it was assumed
that parity is conserved in all reactions, the τ and θ would have had to be two different par-
ticles. However, precision measurements of mass and life time showed no difference between
both particles. They seemed to be identical. The solution of this this θ − τ puzzle was the
parity violation of the weak interaction. Since both mesons decay via weak interaction, this
reaction need not conserve parity contrary to the initial assumption. Hence, both decays
could stem from the same particle, which was then named K+.

Θ+ = τ+ = K+ ⇒ P violated. (π has negative parity.)

Tsung-Dao Lee (born November 24, 1926) is a Chinese American physicist. In 1957,
Lee with C. N. Yang received the Nobel Prize in Physics for their work on the violation
of parity law in weak interaction, which Chien-Shiung Wu experimentally verified. Lee
and Yang were the first Chinese Nobel Prize winners. Mrs Chien-Shiung Wu (* 31.
Mai 1912 in Liuho, Province Jiangsu, China ; - 16. Februar 1997 in New York, USA)
was a Chinese-American physicist.
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V − A theory: On says, that parity is maximally violated. This means that the axial coupling
has the same strength as the vectorial coupling: |cV | = |cA|. Since, as was shown in the
Goldhaber experiment, there are only left-handed neutrinos and right-handed antineutrinos,
one has rather: cV = −cA. This is why one calls the theory “V −A theory”.

- CP violation [Cronin, Fitch, Nobel Prize 1980]

K0
L → 3π CP = −

K0
S → 2π CP = +

Details: After the discovery of parity violation it was supposed widely that CP is conserved.
Assuming CP symmetry, the physical Kaon states are given by the CP eigenstates. The
strong eigenstates K0, K̄0 are, however, no CP eigenstates, since these two particles are
their respective antiparticle. Hence, CP eigenstates are linear combinations of theses states.

|K0
1 >=

1√
2
(|K0 > −|K̄0 >) with CP|K0

1 >= |K0
1 > (5.1)

|K0
2 >=

1√
2
(|K0 > +|K̄0 >) with CP|K0

2 >= −|K0
2 > (5.2)

Supposing CP symmetry these states can only decay under CP conservation. For the neutral
Kaons this leads to two different decay channels for K1 and K2, with very different phase
spaces and hence very different lifetimes:

K0
1 → 2π (quick, since big phase space) (5.3)

K0
2 → 3π (slow, since small phase space) (5.4)

In fact, one has found two different species of neutral Kaons, which are very different in their
lifetimes. These were named K0

L (long-lived, average lifetime (5.16± 0.04) · 10−8 s) and K0
S

(short-lived, average lifetime (8.953± 0.006) · 10−11 s). The average lifetime of the long-lived
Kaon is about a factor 600 larger than the one of the short-lived Kaon.
CP violation: Due to the supposed CP symmetry it was natural to identify the K0

1 , K
0
2 with

K0
S, K

0
L. Hence, the K

0
L would always decay in three and never in two pions. But in reality

James Cronin and Val Fitch found out 1964, that the K0
L decays with a small probaility

(about 10−3) also in two pions. This leads to the fact, that the physical states are no pure
CP eigenstates, but contain a small amount ǫ of the other CP eigenstate, respectively. One
has without normalization:

|K0
S >= (|K0

1 > +ǫ|K0
2 >) (5.5)

|K0
L >= (|K0

2 > +ǫ|K0
1 >) (5.6)

This phenomenon has been checked very carefully in experiments and is called CP violation
through mixing, since it is given by the mixing of the CP eigenstates to the physical eigenstate.
Cronin and Fitch received 1980 the Nobel prize for their discovery. Since one can conclude this
CP violation only indirectly through the observation of the decay, it is also called indirect
CP violation. Also direct CP violation, hence a violation directly in the observed decay,
has been observed. The direct CP violation is for Kaons another factor of 1000 smaller than
the indirect one and was shown experimentally only three decades later at the turn to the
21th century.
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Val Logsdon Fitch (* 10. March 1923 in Merriman, Nebraska), American physicist.
Fitch received 1980 together with James Cronin the physics Nobel Prize for the disco-
very of violations of fundamental symmetry principles in the decay of James Watson
Cronin (* 29. September 1931 in Chicago), US-American physicist.

- Glashow-Salam-Weinberg Theory (GSW): [S.L. Glashow, A. Salam, S. Weinberg,
Nobel Prize 1979]

Sheldon Lee Glashow (* 5. December 1932 in New York) is a US-American physicist
and Nobel prize winner. He received 1979 together with Abdus Salam and Steven Wein-
berg the physics Nobel prize for their work on the theory of the unification of the weak
and electromagnetic interaction between elementary particles, including among others
the prediction of the Z boson and the weak neutral currents. Abdus Salam (* 29. Januar
1926 in Jhang, Pakistan; - 21. November 1996 in Oxford, England) was a Pakistanian
physicist and Nobel prize winner. Steven Weinberg (* 3. Mai 1933 in New York City)
is a US-American physicist and Nobel prize winner.

The electromagnetic interaction is the unified theory of quantum electrodynamics and
the weak interaction. Together with quantum chromodynamics it is a pillow of the
Standard Modell of physics. This unification was initially described theoretically by
S.L. Glashow, A. Salam and S. Weinberg 1967. Experimentally the theory was con-
firmed 1973 indirectly through the discovery of the NC and 1983 through the experi-
mental proof of the W and Z bosons. A peculiarity is the parity violation through the
electroweak interaction.

5.2 Unitarity: Path to Gauge Theories

Fermi theory: µ, β decays, charged current (CC) reactions at small energies.

Leff = GF√
2
j∗λj

λ jλ = ēγλ(1− γ5)νe + (µ) + (q)

GF = 1.16 · 10−5/GeV2

CC scattering at high energies:

σ(ν̄ee
− → µ−ν̄µ) =

G2
F s

π

s-wave unitarity σLL <
4π
s

[Partial-wave unitarity constrains the modulus of an inelastic partial-wave amplitude to be
|M| < 1. Make a partial-wave expansion of the scattering amplitude. The constraint is
equivalent to σ < π/p2c.m. for inelastic s-wave scattering.]

Domain of validity/unitarity constraint:
√
s < (2π/GF )

1
2 ∼ 700 GeV

⇒ 4 steps are necessary to construct of the Fermi theory a consistent field theory with
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attenuation of the 4-point coupling.

Although Fermi’s phenomenological interaction was inspired by the theory of electromagne-
tism, the analogy was not complete, and one may hope to obtain a more satisfactory theory
by pushing the analogy further. An obvious device is to assume that the weak interaction,
like quantum electrodynamics, is mediated by vector boson exchange. The weak intermediate
boson must have the following three properties:

(i) It carries charge ±1, because the familiar manifestations of the weak interactions (such
as β-decay) are charge-changing.

(ii) It must be rather massive, to reproduce the short range of the weak force.

(iii) Its parity must be indefinite.

1.) Introduction of charged W± bosons [Yukawa]:

Interaction range ∼ m−1
W ⇒

E →∞ : σ ∼ G2
Fm

2
W

π
→ partial-wave unitarity is fulfilled; GF = g2W/m

2
W .

2.) Introduction of a neutral vector boson W 3 [Glashow]:

The introduction of the intermediate boson softens the divergence of the s-wave amplitude
for the above process, it gives rise, however, to new divergences in other processes:

Production of longitudinally polarized W ’s in νν̄ collisions.

ǫLλ = ( k0
mW

, 0, 0, E
mW

) ≈ kλ
mW

σ(νν̄ → WLWL) ∼ g4W
s

( √
s

mW

)4 ∼ g4W s

m4
W

← violates unitarity for
√
s >∼ 1 TeV.

Solution: Introduction of a neutral W 3, coupled to fermions and W± :
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Condition for the disappearance of the linear s singularity:

IaikI
b
kj − IbikIakj − ifabcIcij = 0

[Ia, Ib] = ifabcI
c The fermion-boson couplings form a Lie algebra

[associated to a non-abelian group].

Fermion-boson coupling ∼ gW × representation matrix
Boson-boson coupling ∼ gW × structure constants

}

gW universal.

3.) 4-point coupling:

WLWL →WLWL

Amplitude ∼ g2Wf
2 s2

m4
W

+ ... compensated by: −g2W f 2 s2

m4
W

:

4-boson vertex: ∼ g2Wf × f

4.) Higgs particle: [Weinberg, Salam]

The remaining linear s divergence is canceled by the exchange of a scalar particle with a
coupling ∼ mass of the source.

Amplitude ∼ −(gWmW )2 1
s

( √
s

mW

)4

∼ −g2W s
m2

W

The same mechanism cancels the remaining singularity in f f̄ →WLWL (f massive!)

Adding up the gauge diagrams we are left with ∼ g2W
mf

√
s

m2
W
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u
d

c
s

t
b

}

Quarks

νe
e

νµ
µ

ντ
τ

}

Leptons

1. 2. 3. Family

Tabelle 5.1: Matter particles of the Standard Model.

scalar diagram ∼ √s
(

gW
mf

mW

)
1
s
(gWmW )

( √
s

mW

)2

∼ g2W

√
smf

m2
W

Summary:

A theory of massive gauge bosons and fermions that are weakly coupled up to very high
energies, requires, by unitarity, the existence of a Higgs particle; the Higgs particle is a
scalar 0+ particle that couples to other particles proportionally to the masses of the particles.

⇒ Non-abelian gauge field theory with spontaneous
symmetry breaking.

5.3 Gauge Symmetry and Particle Content

The underlying gauge symmetry of the SM is the SU(3)C × SU(2)L × U(1)Y . The SU(3)C
describes QCD. The conserved charge associated with QCD is the colour charge. The cor-
responding gauge bosons that mediate the interaction (and are hence called interaction
particles) are the 8 massless gluons. The SU(2)L describes the weak isospin interactions
acting only between the left-handed fermions, and U(1)Y the weak hypercharge interactions
that differ between the left- and right-handed fermions. The isospin and hypercharge inter-
actions are partly unified in the electroweak interactions which are spontaneously broken.
The electroweak interaction is mediated by three W boson fields and one B field associa-
ted with hypercharge. These fields mix to form two charged W± bosons and the neutral Z
boson of the weak interactions and the photon γ of the electromagnetic interactions. These
particles are interaction particles and carry spin 1. The conserved charges associated with
the electroweak sector are the weak isospin and the weak hypercharge.

The particle content is given by the matter particles and the interaction particles. The
matter particles are fermions with spin 1/2 and are subdivided in three families. They com-
prise 6 quarks and 6 leptons. We know three up-type (up, charm, top) and three down-type
(down, strange, bottom) quarks. The leptons consist of three charged (e, µ, τ) and three
neutral leptons, the neutrinos (νe, νµ, ντ ), cf. Table 5.1.

The 3 lepton and quark families have identical quantum numbers, respectively, and are
only distinguished through their masses. Therefore, when discussing the gauge interaction
is is sufficient to consider only one family. The transformation behaviour of the quark and
lepton fields under the SM gauge groups is summarized (for one generation) in Table 5.2.

The masses of the particles are generated through spontaneous symmetry breaking (SSB).
For this a complex Higgs doublet (dD = 4 degrees of freedom) is added together with the
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Field U(1)Y × SU(2)L × SU(3)C
QL =

(
uL
dL

)

(1
3
, 2, 3)

uR (2
3
, 1, 3̄)

dR (−4
3
, 1, 3̄)

LL =

(
eL
νeL

)

(−1, 2, 1)
eR (2, 1, 1̄)

Tabelle 5.2: Transformation behaviour under the SM gauge groups.

Higgs potential V . The SSB breaks down the SU(2)L × U(1)Y (dEW = 4) to the electroma-
gnetic U(1)em (dem = 1). The electromagnetic charge hence remains conserved. Associated
with this SSB are dEW − dem = 4 − 1 = 3 would-be Goldstone bosons that are absorbed to
give masses to the W± and Z bosons. The photon remains massless. Furthermore, after SSB
there are dD − (dEW − dem) = 4− (4− 1) = 4− 3 = 1 Higgs particles in the spectrum.

One last remark is at order: We know that the neutrinos have mass. When we formulate
the SM in the following we will neglect the neutrino mass and assume neutrinos to be
massless. For the treatment of massive neutrinos we refer to the literature.

5.4 Glashow-Salam-Weinberg Theory for Leptons

We only consider the first lepton generation, i.e. e, νe. The generalization to the other gene-
rations is trivial. We have the

electromagnetic interaction:

Lint = −e0jelmµ Aµ with (5.7)

jelmµ = −ēγµe , (5.8)

where e0 denotes the elementary charge with α = e20/4π. And we have the

weak interaction:

LW = −4GF√
2
j−µ j

µ+ (5.9)

in the Fermi notation for charged currents,

with

j+µ = ν̄eγµ
1− γ5

2
e = ν̄eLγµeL (left-chiral) (5.10)

j−µ = (j+µ )
∗ (5.11)



30 The Standard Model of Particle Physics

GF denotes the Fermi constant, GF ≈ 10−5/m2
P .

The next steps are:

• Resolve the 4-Fermi coupling through the exchange of a heavy vector boson. Apart
from the vector boson mass the structure of the weak interaction is similar to the one
of electrodynamics.

• Construction of the theory as gauge field theory with spontaneous symmetry breaking,
to guarantee renormalizability.

• Analysis of the physical consequences of the symmetry and its breaking.

The free Lagrangian for the electrons and left-handed neutrinos2 is given by the following
expression that takes into account that the particles are massless in case of chiral invariance,

L0 = ēi∂/e+ ν̄eLi∂/νeL

= ēLi∂/eL + ēRi∂/eR + ν̄eLi∂/νeL , (5.12)

where

fR,L =
1

2
(1± γ5)f (5.13)

The free Lagrangian L0 is SU(2)L symmetric. The associated conserved charge is the weak isospin:

(
νe
e

)

L

: Isodublett mit I(νeL) = I(eL) =
1

2
and I3(νeL) = +

1

2

I3(eL) = −
1

2
(5.14)

eR : Isosingulett mit I(eR) = I3(eR) = 0

The Lagrangian

L0 =

(
νe
e

)

L

i∂/

(
νe
e

)

L

+ ēRi∂/eR (5.15)

is invariant under the global isospin transformation
(
νe
e

)

L

→ e−
i
2
g~α~τ

(
νe
e

)

L

eR → eR (5.16)

The theory becomes locally SU(2)L invariant through the introduction of an isovector ~Wµ

of vector fields with minimal coupling:

doublet : i∂/→ i∂/− g
2
~τ ~W/

singlet : i∂/→ i∂/

}

from: i∂/→ i∂/ − g~I ~W/ (5.17)

2The Goldhaber experiment (1957) has shown, that neutrinos appear in nature only as left-handed par-
ticles. This is a confirmation of the V −A theory that predicts the parity violation of the weak interaction.



The Standard Model of Particle Physics 31

The resulting interaction Lagrangian for the lepton-W coupling reads:

Lint = −g
2

(
νe
e

)

L

γµ~τ

(
νe
e

)

L

~W µ

= − g

2
√
2
ν̄eγµ(1− γ5)eW+µ + h.c.− g

4
{ν̄eγµ(1− γ5)νe − ēγµ(1− γ5)e}W 3µ (5.18)

where we have introduced

W± =
1√
2
(W 1 ∓ iW 2) . (5.19)

From Eq. (5.18) we can read off

• The charged lepton current has per construction the correct structure.

• W 3
µ , the neutral isovector field cannot be identified with the photon field Aµ since the

electromagnetic currect does not contain any ν’s and furthermore has a pure vector
character (and hence does not contain a γ5).

This leads to the formulation of the minimal SU(2)L × U(1)Y gauge theory:

The Lagrangian L0, Eq. (5.18), has an additional U(1) gauge symmetry (after coupling ~W )
and associated with this the weak hypercharge. The quanum numbers are defined in such a
way that we obtain the correct electromagnetic current:
(In order to include electromagnetism we define the “weak hypercharge”.)

jelmµ = −ēγµe = −ēLγµeL − ēRγµeR

=
1

2

(
νe
e

)

L

γµτ3

(
νe
e

)

L
︸ ︷︷ ︸

Isovector current,
coupling to W 3

µ

− 1

2

(
νe
e

)

L

γµ1

(
νe
e

)

L

− ēRγµeR
︸ ︷︷ ︸

Isosinglets, for the construction
of the hypercharge current

(5.20)

The hypercharge quantum numbers are

Y (νeL) = Y (eL) = −1 (5.21)

Y (eR) = −2 . (5.22)

This follows from the requirement that the Gell-Mann Nishijima relation3 holds

Q = I3 +
1

2
Y (5.23)

Local gauge invariance is achieve through the minimal coupling of the gauge vector field,

i∂/→ i ∂/− g′

2
Y B/ . (5.24)

3Originally this equation was derived from empiric observations. Nowadays it is understood as result of
the quark model.
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This leads to the Lagrangian

Lint = −
g√
2
ν̄eLγµeLW

+µ + h.c. − g

2
{ν̄eLγµνeL − ēLγµeL}W 3µ

+ g′{1
2
ν̄eLγµνeL +

1

2
ēLγµeL + ēRγµeR}Bµ (5.25)

From the Lagrangian Eq (5.25) we can read off:

• The charged currents remain unchanged.

• We can introduce a mixture between W 3 and B in such a way that the pure parity
invariant electron photon interaction is generated. We are left with a
neutral current interaction with the orthogonal field combination:

Aµ = cos θWBµ + sin θWW
3
µ

Zµ = − sin θWBµ + cos θWW
3
µ

}
Bµ = cos θWAµ − sin θWZµ
W 3
µ = sin θWAµ + cos θWZµ

}

(5.26)

Here θW denotes the Weinberg angle. Rewriting the Lagrangian in terms of Aµ and Zµ leads
to the Aµ coupling

Aµ{ν̄eLγµνeL{−
g

2
sin θW +

g′

2
cos θW}+ ēLγµeL{

g

2
sin θW +

g′

2
cos θW}+ ēRγµeRg

′ cos θW}
(5.27)

The neutrino ν can be eliminated through

tan θW =
g′

g
. (5.28)

(The photon only couples to charge particles!) The correct e-coupling is obtained by

g′ cos θW = e0
g sin θW = e0

}

1

e20
=

1

g2
+

1

g′2
(5.29)

The lepton-boson interaction hence reads

Lint = − g

2
√
2
ν̄eγµ(1− γ5)eW+µ + h.c.

− g

4 cos θW
{ν̄eγµ(1− γ5)νe − ēγµ(1− γ5)e+ 4 sin2 θW ēγµe}Zµ (5.30)

+ e0ēγµeA
µ

The first line describes the charged current interactions, the second the neutral current
interaction and the third line the electromagnetic ineractions.

The coupling constants of the theory are: [g, g′] or [e0, sin θW ].
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• The coupling e0 =
√
4πα ∼ 1

3
is fixed within electromagnetism.

• The second parameter is not fixed through the weak interactions as the charged current
only fixes the relation GF√

2
= g2

8m2
W

.

With the notation

j−µ = ν̄eγµ
1− γ5

2
e

j3µ =

(
νe
e

)

L

γµ
τ 3

2

(
νe
e

)

L

(5.31)

jemµ = −ēγµe
the interaction Lagrangian can be written as

Lint = − g√
2
j−µW

+µ + h.c.

− g

cos θW
{j3µ − sin2 θW j

em
µ }Zµ (5.32)

−e0jemµ Aµ

where g = e0
sin θW

.

However, the Lagrangian does not conain mass terms for the fermions and gauge bosons yet.
The theory muss be modified in such a way that the particles obtain their mass without
getting into conflict with the gauge symmetry underlying the theory.

5.5 Introduction of the W,Z Boson and Fermion Mas-

ses

Let us repeat. With the currents

j±µ = l̄Lγµτ
±lL where lL = (νe, e)

T
L

j3µ = l̄Lγµ
1

2
τ 3lL (5.33)

jemµ = −ēγµe (5.34)

the interaction Lagrangian can be written as

Lint = − g√
2
j−µW

+µ + h.c.

− g

cos θW
{j3µ − sin2 θW j

em
µ }Zµ (5.35)

−e0jemµ Aµ (5.36)

and the couplings fulfill the relations

g′

g
= tan θW

GF√
2

=
g2

8m2
W

(5.37)

e0 = g sin θW .
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The generation of masses for the 3 vector fields, hence the absorption of 3 Goldstone bosons,
is not possible with 3 scalar fields. The minimal solution is the introcduction of one complex
doublet with 4 degrees of freedom,

φ =

(
φ+

φ0

)

with
φ+ = 1√

2
(φ1 + iφ2)

φ0 = 1√
2
(φ3 + iφ4)

(5.38)

The Lagrangian of the doublet field φ is given by

Lφ = ∂µφ
∗∂µφ− µ2φ∗φ− λ(φ∗φ)2 (5.39)

It is SU(2)L × U(1)Y invariant. The field φ transforms as

φ→ e−
i
2
g~α~τe−

i
2
g′β .φ (5.40)

After spontaneous symmetry breaking the vacuum expectation value of the scalar field is

< φ >=
1√
2

(
0
v

)

v∗ = v (5.41)

It breaks the SU(2)L×U(1)Y symmetry, but is invariant under the U(1)em symmetry, gene-
rated by the electric charge operator. Since each (would-be) Goldstone boson is associated
with a generator that breaks the vacuum, we have 4−1 = 3 Goldstone bosons. The quantum
numbers of the field φ are

I3(φ+) = +1
2

Y (φ+) = +1
I3(φ0) = −1

2
Y (φ0) = +1

}
Q(φ+) = 1
Q(φ0) = 0

(5.42)

(The field φ transforms as an SU(2)L doublet and therefore has to have the hypercharge
Yφ = 1.) The gauge fields are introduced through minimal coupling,

i∂µ → i∂µ −
g

2
~τ ~Wµ −

g′

2
Bµ . (5.43)

Expanding about the minimum of the Higgs potential

φ+(x)→ 0

φ0(x)→
1√
2
[v + χ(x)] χ∗ = χ (5.44)

one obtains from the kinetic part of the Lagrangian of the scalar field

Lm =

∣
∣
∣
∣

[

(i
g

2
~τ ~W + i

g′

2
B)

(
0
v√
2

)]∣
∣
∣
∣

2

=
1

2

v2

4







W1

W2

W3

B







T 





g2

g2

g2 −gg′
−gg′ g′2













W1

W2

W3

B







(5.45)

with the eigenvalues of the mass matrix given by

m2
1 = m2

2 =
g2v2

4

m2
3 =

(g2 + g′2)v2

4
(5.46)

m2
4 = 0

Thereby the masses of the gauge bosons read
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m2
γ = 0 (5.47)

m2
W =

1

4
g2v2 (5.48)

m2
Z =

1

4
(g2 + g′2)v2 (5.49)

They fulfill the folowing mass relations:

(i) W boson mass: We have e20 = g2 sin2 θW = 4
√
2GF sin2 θWm

2
W , so that

m2
W =

πα√
2GF

1

sin2 θW
(5.50)

with α ≈ α(m2
Z) (effective radiative correction). With sin2 θW ≈ 1/4 the W boson mass is

mW ≈ 80 GeV.

(ii) Z boson mass: With

m2
W

m2
Z

= cos2 θW (5.51)

we obtain

sin2 θW = 1− m2
W

m2
Z

(5.52)

Finally one obtains with Eq. (5.48) for the Higgs vacuum expectation value

1

v2
=

g2

4m2
W

=
√
2GF (5.53)

and thereby

v =
1

√√
2GF

≈ 246 GeV (5.54)

The vacuum expectation value v is the characteristic scale of electroweak symmetry breaking.

The Higgs mechanism for charged lepton masses: The fermions couple via the gauge-invariant
Yukawa coupling to the Higgs field φ:

The interaction Lagrangian reads

L(eeφ) = −fe
(
νe
e

)

L

φeR + h.c. (5.55)
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It is invarian under SU(2)L×U(1)Y . After expansion of the Higgs field around the VEV one
obtains

L(eeΦ) = −fe
v√
2
[ēLeR + ēReL] + ...

= −fe
v√
2
ēe+ ...

= −meēe+ ... (5.54)

The electron mass is given by

me =
fev√
2

(5.55)

5.6 Quarks in the Glashow-Salam-Weinberg Theory

In this chapter the hadronic sector is implemented in the SM of the weak and electromagnetic
interactions. This is done in the context of the quark model. Since quarks and leptons
ressemble each other, the construction on the quark level is obvious, but not trivial.

We know from the previous chapters that the lepton currents are built from multiplets.

(
νe
e−

)

L

e−R

(
νµ
µ−

)

L

µ−
R

(
ντ
τ−

)

L

τ−R (5.56)

This can be generalized to the quark currents.

For the quark currents for u, d, s we have:

1) The electromagnetic current, after summation over all possible charges, is given by

jelmµ =
∑

Qq

Qq q̄γµq =
2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs (5.57)

2) From low-energy experiments (pion and Kaon decays) it followed that the left-handed
weak current, the Cabibbo current, is given by4

j−µ = cos θcūγµ
1

2
(1− γ5)d+ sin θcūγµ

1

2
(1− γ5)s

= ūγµ
1

2
(1− γ5)[cos θcd+ sin θcs] (5.57)

4Cabibbo’s conjecture was that the quarks that participate in the weak interactions are a mixture of the
quarks that participate in the strong interaction. The mixing was originally postulated by Cabibbo (1963)
to explain certain decay patterns in the weak interactions and originally had only to do with the d and s

quarks.
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with sin2 θc ≈ 0.05. We define the Cabibbo rotated quarks

dc = cos θcd+ sin θcs

sc = − sin θcd+ cos θcs (5.57)

Here,

d, s are different direction in the (u, d, s) space of quarks, characterized by
different masses, i.e. we are in the mass basis.

dc, sc are directions in the quark space, characterized through the
weak interacation, they represent the current basis.

The current j±µ can be expressed through j∓µ = Q̄Lγµτ
∓QL with the definitions of the

multiplets given by

(
u
dc

)

L
scL

uR
dcR scR

(5.58)

3) The corresponding neutral isovector current is then given by

j3µ =
∑

doublets

Q̄Lγµ
1

2
τ 3QL

∼ ūLγµuL − d̄cLγµdcL
= ūLγµuL − cos2 θcd̄LγµdL − sin2 θcs̄LγµsL

− sin θc cos θc[d̄LγµsL + s̄LγµdL] (5.56)

The first line is a diagonal neutral current. The second line is a strangeness chan-
ging neutral current with the strength ∼ sin θc, like the strangeness changing charged
current.

This is in striking contradiction with the experimental non-observation of strangeness chan-
ging neutral current reactions. There are strict experimental limits on the decay rates that
are mediated by strangeness changing neutral currents like

1)
Γ(KL → µ+µ−)

Γ(K+ → µ+νµ)
< ∼ 4 · 10−9(exp)

2)
Γ(K+ → πνν̄)

Γ(K+ → all)
< 1.4 · 10−7(exp) (5.56)

3)
|m(KL)−m(KS)|

m(K)
< 7 · 10−15mK0(exp) (5.57)

1) The observed rate for the decay KL → µ+µ− can be understood in terms of QED and
the known KL → γγ transition rate and leaves little room for an elementary s̄d → µ+µ−

transition.
2) The decay K+ → πνν̄ can be understood in terms of the elementary reaction s̄→ d̄νν̄.
3) Similarly the smallness of observables linked to |∆S| = 2 transition amplitudes, such as
the KL −KS mass difference leaves little room for strangeness changing neutral currents.

Thus, in the Weinberg-Salam model, or more generally in models that allow for neutral
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current relations that are proportional to the third component of the weak isospin, it is
important to prevent the appearance of strangeness changing neutral currents. An elegant
solution to the problem of flavour-changing neutral currents was proposed by Glashow, Ilio-
poulos and Maiani.

We need a “natural mechanism”, i.e. originating from a symmetry, stable against perturba-
tions, that suppresses 8 orders of magnitude. This can be achieved through the introduction
of a fourth quark, the charm quark c. [Glashow, Iliopoulos, Maiani, PRD2(70)1985]

The new multiplet structure is then given by

(
u
dc

)

L

(
c
sc

)

L

uR
dcR

cR
scR

(5.58)

(a) The isovector current now reads:

j3µ =
∑

doublets

Q̄Lγµ
1

2
τ 3QL =

1

2
[ūLγµuL − d̄LγµdL + c̄LγµcL − s̄LγµsL] (5.59)

The addition of the charm quark c diagonalizes the neutral current (GIM mechanism) and
eliminates ∆S 6= 0,NC reactions.

(b) The electromagnetic current is given by:

jemµ =
2

3
[ūγµu+ c̄γµc]−

1

3
[d̄γµd+ s̄γµs] (5.60)

(c) The charged current reads:

j−µ = ūγµ
1

2
(1− γ5)[cos θcd+ sin θcs] + c̄γµ

1

2
(1− γ5)[− sin θcd+ cos θcs] (5.61)

The first term is the Cabibbo current, the second the charm current with strong (c, s) coup-
ling.

In 1973 (1 year before the discovery of the charm quark!) Kobayashi and Maskawa ex-
tended Cabibbo’s idea to six quarks. We thereby obtain a 3× 3 matrix that mixes the weak
quarks and the strong quarks. Only in this way the CP violation can be explained. (We
come back to this point later.) We also need the 3rd quark family to obtain an anomaly-free
theory. We call anomalies terms that violate the classical conservation laws. Thus it can
happen that a (classical) local conservation law derived from gauge invariance with the help
of Noether’s theorem holds at tree level but is not respected by loop diagrams. The simplest
example of a Feynman diagram leading to an anomaly is a fermion loop coupled to two vec-
tor currents and one axial current. Because the weak interaction contains both vector and
axial vector currents there is a danger that such diagrams may arise in the Weinberg-Salam
theory and destroy the renormalizability of the theory. The anomaly is canceled if for each
lepton doublet we introduce three quark doublets corresponding to the three quark coulours.
Since we have three lepton doublets we need to introduce a third quark doublet (with three
colours). This was also supported by the observation of a fifth quark (the b quark) in the Υ
family.
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5.7 The CKM Matrix

5.7.1 Die Fermion Yang-Mills Lagrangian

If we take the down-type quarks in the current basis, then the matrix for the weak interaction
of the fermions is diagonal (see also Eqs. (5.57) and (5.61)). With the definitions

U =





u
c
t



 D′ =





d′

s′

b′





E =





e
µ
τ



 NL =





νeL
νµL
ντL



 , (5.61)

where ′ denotes the fields in the current basis, we obtain for the Yang-Mills Lagrangian

LYM−F = (ŪL, D̄′
L)iγ

µ(∂µ + igW a
µ

τa

2
+ ig′YLBµ)

(
UL
D′
L

)

+ (N̄L, ĒL)iγ
µ(∂µ + igW a

µ

τa

2
+ ig′YLBµ)

(
NL

EL

)

+
∑

ΨR=UR,D
′

R,ER

Ψ̄Riγ
µ(∂µ + ig′YRBµ)ΨR

= Ū i∂/U + D̄′i∂/D′ + Ēi∂/E + N̄Li∂/NL + Lint . (5.59)

The interaction Lagrangian reads

Lint = −eJµemAµ −
e

sin θW cos θW
JµNCZµ −

e√
2 sin θW

(J−µW+
µ + h.c.) . (5.60)

The electromagnetic current is given by

Jµem = QuŪγ
µU +QdD̄′γµD′ +QeĒγ

µE , (5.61)

the neutral weak current by

JµNC = (ŪL, D̄′
L)γ

µ τ3
2

(
UL
D′
L

)

+ (N̄L, ĒL)γ
µ τ3
2

(
NL

EL

)

− sin2 θWJ
µ
em

=
1

2
ŪLγ

µUL −
1

2
D̄′

Lγ
µD′

L +
1

2
N̄Lγ

µNL −
1

2
ĒLγ

µEL − sin2 θWJ
µ
em (5.61)

and the charged weak current by

J−µ = (ŪL, D̄′
L)γ

µ τ1 + iτ2
2

(
UL
D′
L

)

+ (N̄L, ĒL)γ
µ τ1 + iτ2

2

(
NL

EL

)

= ŪLγ
µD′

L + N̄Lγ
µEL . (5.61)

(The latter is purely left-handed and diagonal in generation space.)
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5.7.2 Mass Matrix and CKM Matrix

Remark: Be χ1, χ2 SU(2) doublets. Then there are two possibilities to form an SU(2) singlet:
1) χ†

1χ2 and χ†
2χ1

2) χT1 ǫχ2 and χT2 ǫχ1, where

ǫ =

(
0 1
−1 0

)

.

Proof: Perform an SU(2) transformation

χ1(x) → U(x)χ1(x) χ†
1 → χ†

1U
−1

χ2(x) → U(x)χ2(x) χ†
2 → χ†

2U
−1 , (5.60)

where

U(x) = eiωa(x)τa/2 . (5.61)

1) is invariant under this transformation.
2) Here we have

(Uχ1)
T ǫUχ2 = χT1U

T ǫUχ2 = χT1 ǫχ2 (5.62)

because with

U = eiA =
∞∑

0

(iA)n

n!
⇒ UT =

∑

n

(iAT )n

n!
, A = ωa(x)

τa

2
. (5.63)

And since (τa)T ǫ = −ǫτa, we obtain

UT ǫU = ǫU−1U = ǫ , (5.64)

so that also 2) is invariant.

The Yukawa Lagrangian: We write up the most general, renormalizable, SU(2)L × U(1)Y
invariant Hermitean fermion-fermion-boson Lagrangian. With the SU(2) doublets

(
UL
D′
L

)

,

(
NL

EL

)

,Φ =

(
φ+

φ0

)

(5.65)

and the SU(2) singlets

UR , D
′
R , ER (5.66)

we can construct 2 SU(2) invariant interactions,

Φ†
(
ψ1L

ψ2L

)

= (φ+)∗ψ1L + (φ0)∗ψ2L (5.67)

and

ΦT ǫ

(
ψ1L

ψ2L

)

= φ+ψ2L − φ0ψ1L , (5.68)
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so that for the Yukawa Lagrangian that conserves also the hypercharge we obtain:

LY uk = −(ēR, µ̄R, τ̄R)CE











Φ†
(
νeL
eL

)

Φ†
(
νµL
µL

)

Φ†
(
ντL
τL

)











+ (ūR, c̄R, t̄R)CU











ΦT ǫ

(
uL
d

′

L

)

ΦT ǫ

(
cL
s
′

L

)

ΦT ǫ

(
tL
b
′

L

)











−(d̄′

R, s̄
′

R, b̄
′

R)CD











Φ†
(
uL
d

′

L

)

Φ†
(
cL
s
′

L

)

Φ†
(
tL
b
′

L

)











+ h.c. . (5.68)

The CE , CU , CD are arbitrary complex matrices. We perform through the following unitary
transformations a transition into an equivalent field basis (Fields are no observables!)

NL(x) → V1NL(x) UL(x)→ V2UL(x)

EL(x) → V1EL(x) D′
L(x)→ V2D

′
L(x)

ER(x) → U1ER(x) UR(x)→ U2UR(x)

D′
R(x)→ U3D

′
R(x) , (5.66)

where U1, U2, U3, V1, V2 are unitary 3 × 3 matrices. Since the lepton and quark doublets
transform in the same way this does not change the Yang-Mills-, the Higgs- and the Yang-
Mills fermion Lagrangian. Only the C matrices are changed:

CE → U †
1CEV1 CU → U †

2CUV2 CD → U †
3CDV2 . (5.67)

By choosing the U †
1 and V1 matrices appropriately we can diagonalize CE,

U †
1CEV1 =





he
hµ

hτ



 with he, hµ, hτ ≥ 0 . (5.68)

Similarly,

U †
2CUV2 =





hu
hc

ht



 with hu, hc, ht ≥ 0 . (5.69)

Eq. (5.69) fixes the matrix V2. By choosing U3 appropriately we obtain

U †
3CDV2 =





hd
hs

hb



V † with hu, hc, ht ≥ 0 . (5.70)

where V † is a unitary matrix. We transform D′
R by D′

R → V †D′
R and obtain

CD → V





hd
hs

hb



V † . (5.71)
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We expand Φ around the vacuum expectation value

Φ =

(

0
v+H(x)√

2

)

(5.72)

where H(x) is a real field, and obtain

(d̄′R, s̄
′
R, b̄

′
R)V





hd
hs

hb



V †











Φ†
(
uL
d′L

)

Φ†
(
cL
s′L

)

Φ†
(
tL
b′L

)











= (d̄′R, s̄
′
R, b̄

′
R)V





hd
hs

hb



V †






1√
2
(v +H(x))d′L

1√
2
(v +H(x))s′L

1√
2
(v +H(x))b′L




 . (5.72)

After a basis transformation




d
s
b



 = V †





d′

s′

b′



 (5.73)

we finally have

(d̄R, s̄R, b̄R)





hd
hs

hb




1√
2
(v +H(x))





dL
sL
bL



 . (5.74)

The Yang-Mills and the Higgs Lagrangian do not change under the transformation (5.73).
But the Yang-Mills fermion Lagrangian becomes

LYM−F = Ū i∂/U + D̄i∂/D + Ēi∂/E + N̄Li∂/NL − eJµemAµ
− e

sin θW cos θW
JµNCZµ −

e√
2 sin θW

(J−µW+
µ + h.c.) . (5.74)

with

J−µ = ŪLγ
µD′

L + N̄Lγ
µEL = ŪLγ

µV DL + N̄Lγ
µEL . (5.75)

The unitary 3× 3 matrix V is called CKM (Cabibbo-Kobayashi-Maskawa) mixing matrix.

The matrix V is unitary, i.e. V †V = V V † = 1. We investigate the number of free parameters.
For a complex n × n matrix we have 2n2 free parameters. Since the matrix is unitary, the
number of free parameters is reduced by n2 equations. Futhermore the phases can be absorbed
by a redefinition of the fermion fields, so that the number of free parameters is reduced by
further(2n− 1) conditions:

Parameters: n× n complex matrix: 2n2

unitarity: n2

free phase choice: 2n− 1
(n− 1)2 free parameters
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In the Euler parametrisation we have

rotation angles: 1
2
n(n− 1)

phases: 1
2
(n− 1)(n− 2)

Thus we find for n = 2, 3

n angles phases
2 1 0
3 3 1

We thereby find that in a

2− family theory ∼ Cabibbo: no CP violation with L currents
3− Familien Theorie ∼ KM: complex matrix → CP violation

“Prediction of a 3-family structure“

Next we investigate how we can parametrise the matrix:

(i) Esthetic parametrisation:

VCKM = Rsb(θ2)U(δ)Rsd(θ1)Rsb(θ3) (5.74)

with

0 ≤ θi ≤ π/2

−π ≤ δ ≤ +π (5.74)

and

Rsb(θ2) =





1 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2



 etc. U =





1 0 0
0 1 0
0 0 eiδ



 (5.75)

(ii) Convenient parametrisation (Wolfenstein):

V =





1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1



 (5.76)

The determination of the parameters is done by

(a) Cabibbo theory: λ = 0.221± 0.002
(b) b→ c decays: Vcb = Aλ2 → A = 0.78± 0.06
(c) b→ u decays: |Vub/Vcb| = 0.08± 0.02 → (ρ2 + η2)1/2 = 0.36± 0.09
(d) t matrix elements through unitarity

(e) CP violation:

The unitarity of the CKM matrix leads to the unitarity triangle

V ∗
udVtd + V ∗

usVts + V ∗
ubVtb = 0

Aλ3(1− ρ− iη)− Aλ3 + Aλ3(ρ+ iη) = 0

⇒ (ρ+ iη) + (1− ρ− iη) = 1 (5.75)
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We hence have the unitarity triangle

with the edges (0, 0), (1, 0), (ρ, η) (in the complex plane) and the angles α, β, γ. The deter-
mination is done through

(i) ρ2 + η2, circle around 0, from b→ u and b→ c decays.

(ii) η > 0 from the CP violation in the K system.

(iii) Bd − B̄d oscillations:

|1− ρ− iη| = 1.03± 0.22

(iv) β from CP violation in B → J/ΨK

α from CP violation in B → ππ

γ from CP violation in B → ρK
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The Standard Model Higgs Sector
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6.1 The Introduction of the Higgs Boson

There are two reasons for the introduction of the Higgs boson in the Standard Model (SM)
of particle physics:

1. A theory of massive gauge bosons and fermions, which is weakly interacting up to very
high energies, requires for unitarity reasons the existence of a Higgs particle. The Higgs
particle is a scalar 0+ particle, i.e. a spin 0 particle with positive parity, which couples
to the other particles with a coupling strength proportional to the mass (squared) of
the particles.
Look e.g. at the amplitude for the scattering of longitudinal gauge bosons WL into a
pair of longitudinal gauge bosons WL, see Fig. 6.1. Without a Higgs boson the ampli-
tude diverges proportional to the center-of-mass (c.m) energy squared, s, cf. Fig. 6.1
(upper), where GF denotes the Fermi constant. The introduction of a Higgs boson
which couples proportional to the mass squared of the gauge boson, regularizes the
amplitude, cf. Fig. 6.1 (lower), where MH denotes the Higgs boson mass.

1
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Abbildung 6.1: The scattering of longitudinal gauge bosons in longitudinal gauge bosons.
Upper: without a Higgs boson. Lower: with a Higgs boson

2. The introduction of mass terms for the gauge bosons violates the SU(2)L × U(1)
symmetry of the SM Lagrangian. The same problem arises for the introduction of
mass terms for the fermions.

6.2 The Standard Model Higgs sector

The problem of mass generation without violating gauge symmetries can be solved by intro-
ducing an SU(2)L Higgs doublet Φ with weak isospin I = 1/2 and hypercharge Y = 1 and
the SM Higgs potential given by

V (Φ) = λ[Φ†Φ− v2

2
]2 . (6.1)

V (φ)

φ0

φ+

Introducing the Higgs field in a physical gauge,

Φ =
1√
2

(
0

v +H

)

, (6.2)

the Higgs potential can be written as

V (H) =
1

2
M2

HH
2 +

M2
H

2v
H3 +

M2
H

8v2
H4 . (6.3)

Here we can read off directly the mass of the Higgs boson and the Higgs trilinear and quartic
self-interactions. Adding the couplings to gauge bosons and fermions we have
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Mass of the Higgs boson MH =
√
2λv

Couplings to gauge bosons gV V H =
2M2

V

v

Yukawa couplings gffH =
mf

v

T rilinear coupling λHHH = 3
M2

H

M2
Z[units λ0 = 33.8 GeV]

Quartic coupling λHHHH = 3
M2

H

M4
Z[units λ2

0
]

In the SM the trilinear and quartic Higgs couplings are uniquely determined by the mass of
the Higgs boson.

The Higgs potential with its typical form leads to a non-vanishing vacuum expectation
value (VEV) v in the ground state

v =
1

√√
2GF

≈ 246 GeV. (6.4)

Expansion of Φ around the minimum of the Higgs potential leads to one massive scalar
particle, the Higgs boson, and three massless Goldstone bosons, that are absorbed to give
masses to the charged W bosons and the Z boson. (For a toy example, see Appendix ??.)
The appearance of Goldstone bosons is stated in the Goldstone theorem, which says:

Be

N = dimension of the algebra of the symmetry group of the complete Lagrangian.
M = dimension of the algebra of the group, under which the vacuum

is invariant after spontaneous symmetry breaking.

⇒ There are N-M Goldstone bosons without mass in the theory.

The Goldstone theorem states, that for each spontaneously broken degree of freedom of the
symmetry there is one massless Goldstone boson.

In gauge theories, however, the conditions for the Goldstone theorem are not fulfilled:
Massless scalar degrees of freedom are absorbed by the gauge bosons to give them mass. The
Goldstone phenomenon leads to the Higgs phenomenon.

6.3 Verification of the Higgs mechanism

On the 4th July 2012, the LHC experiments ATLAS and CMS announced the disovery
of a new scalar particle with mass MH ≈ 125 GeV. The discovery triggered immediately
the investigation of the properties of this particle in order to test if it is indeed the Higgs
particle, that has been disovered. In order to verify experimentally the Higgs mechanism as
the mechanism which allows to generate particle masses without violating gauge principles,
we have to perform several steps:

1.) First of all the Higgs particle has to be discovered.

2.) In the next step its couplings to gauge bosons and fermions are measured. If the Higgs
mechanism acts in nature these couplings are proportional to the masses (squared) of
the respective particles.
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3.) Its spin and parity quantum numbers have to be determined.

4.) And finally, the Higgs trilinear and quartic self-couplings must be measured. This way,
the Higgs potential can be reconstructed which, with its typical minimax form, is
responsible for the non-vanishing vacuum expectation value, that is essential for the
non-zero particle masses.

In the following, we will see how this program can be performed at the hadron collider LHC.

6.4 Higgs boson decays

In order to search for the Higgs boson at existing and future colliders, one has to know what
to look for. Hence, one has to study the Higgs decay channels. Since the Higgs boson couples
proportional to the mass of the particle its preferred decays will be those into heavy particles,
i.e. heavy fermions and, when kinematically allowed, into gauge bosons. The branching ratios
into fermions are for MH = 125.09 GeV1

H

f

�

f

+

m

f

v

BR(H → bb̄) = 0.5797
BR(H → τ+τ−) = 0.06245
BR(H → cc̄) = 0.02879
BR(H → tt̄) = 0

. (6.4)

They are obtained from the partial width Γ(H → f f̄) into fermions and the total width Γtot,
which is given by the sum of all partial decay widths of the Higgs boson,

BR(H → f f̄) =
Γ(H → f f̄)

Γtot

. (6.5)

The tree-level partical decay width into fermions is given by

Γ(H → f f̄) =
NcfGFMH

4
√
2π

m2
fβ

3 , (6.6)

with the velocity

β = (1− 4m2
f/M

2
H)

1/2 (6.7)

of the fermions, their mass mf , and the colour factor Ncf = 1(3) for leptons (quarks). These
decays receive large QCD corrections which have been calculated by various groups and
can amount up to -50%. The electroweak corrections in total are small of O(5%), in the
intermediate mass range.

The branching ratios into massive gauge bosons reach for MH = 125.09 GeV

1These decays have been calculated with HDECAY, a Fortran code by A. Djouadi, J. Kaliniowski, M. Muhl-
leitner and M. Spira. It can be downloaded at: http://tiger.web.psi.ch/hdecay
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H

W

+

; Z

W

�

; Z

+

M

2

V

v

BR(H →W+W−) = 0.2167
BR(H → ZZ) = 0.02656

. (6.8)

The tree-level decay width into a pair of on-shell massive gauge bosons V = Z,W is given
by

Γ(H → V V ) = δV
GFM

3
H

16
√
2π
β(1− 4x+ 12x2) , (6.9)

with x =M2
V /M

2
H , β =

√
1− 4x and δV = 2(1) for V = W (Z). The electroweak corrections

to these decays are of the order 5-20%. For a Higgs boson of mass MH = 125 GeV off-shell
decays H → V ∗V ∗ → 4l are important. The program PROPHECY4F includes the complete
QCD and EW next-to-leading order (NLO) corrections to H →WW/ZZ → 4f .

The decay into gluon pairs proceeds via a loop with the dominant contributions from top
and bottom quarks and for MH = 125.09 GeV has a branching ratio of:

H t; b

g

g

BR(H → gg) = 0.08157 . (6.10)

At leading order (LO) the decay width can be cast into the form

ΓLO(H → gg) =
GFα

2
sM

3
H

36
√
2π3

∣
∣
∣
∣
∣

∑

Q=t,b

AHQ (τQ)

∣
∣
∣
∣
∣

2

, (6.11)

with the form factor

AHQ =
3

2
τ [1 + (1− τ)f(τ)] (6.12)

f(τ) =

{
arcsin2 1√

τ
τ ≥ 1

−1
4

[

log 1+
√
1−τ

1−
√
1−τ − iπ

]2

τ < 1
(6.13)

The parameter τQ = 4M2
Q/M

2
H is defined by the pole mass MQ of the heavy loop quark

Q. Note that for large quark masses the form factor approaches unity. The strong coupling
constant is denoted by αs. The QCD corrections have been calculated. They are large and
increase the branching ratio by about 70% at next-to-leading order (NLO). They are known
up to next-to-next-to-next-to leading order(N3LO). The electroweak corrections increase the
partial Higgs decay width into gluons by about 5%.

Further loop-mediated decays are those into 2 photons or a photon and a Z boson. They are
mediated by charged fermion and W boson loops, the latter being dominant.
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Although (for MH = 125.09 GeV) they amount only up to

BR(H → γγ) = 2.265× 10−3 (6.14)

BR(H → Zγ) = 1.537× 10−3 (6.15)

the γγ final state is an important search mode for light Higgs bosons at the LHC. The partial
decay width into photons reads

Γ(H → γγ) =
GFα

2M3
H

128
√
2π3

∣
∣
∣
∣
∣

∑

f

Ncfe
2
fA

H
f (τf ) + AHW (τW )

∣
∣
∣
∣
∣

2

, (6.16)

with the form factors

AHf (τ) = 2τ [1 + (1− τ)f(τ)] (6.17)

AHW (τ) = −[2 + 3τ + 3τ(2− τ)f(τ)] , (6.18)

with the function f(τ) defined in Eq. (6.13). The parameters τi = 4M2
i /M

2
H (i = f,W )

are defined by the corresponding masses of the heavy loop particles. Ncf denotes again the
colour factor of the fermion and ef the electric charge. For large loop masses the form factors
approach constant values,

AHf → 4
3

for M2
H ≪ 4M2

Q

AHW → −7 for M2
H ≪ 4M2

W .
(6.19)

The W loop provides the dominant contribution in the intermediate Higgs mass regime, and
the fermion loops interfere destructively. The QCD corrections have been calculated and are
small in the intermediate Higgs boson mass region. The tree-level decay width into Zγ is
given

Γ(H → Zγ) =
G2
FM

2
WαM

3
H

64π4

(

1− M2
Z

M2
H

)3
∣
∣
∣
∣
∣

∑

f

AHf (τf , λf) + AHW (τW , λW )

∣
∣
∣
∣
∣

2

, (6.20)

with the form factors

AHf (τ, λ) = 2Ncf
ef (I3f − 2ef sin

2 θW )

cos θW
[I1(τ, λ)− I2(τ, λ)]

AHW (τ, λ) = cos θW

{

4(3− tan2 θW )I2(τ, λ)

+

[(

1 +
2

τ

)

tan2 θW −
(

5 +
2

τ

)]

I1(τ, λ)
}

. (6.19)

The functions I1 and I2 read

I1(τ, λ) =
τλ

2(τ − λ) +
τ 2λ2

2(τ − λ)2 [f(τ)− f(λ)] +
τ 2λ

(τ − λ)2 [g(τ)− g(λ)] (6.20)

I2(τ, λ) = − τλ

2(τ − λ) [f(τ)− f(λ)] . (6.21)
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The function g(τ) can be cast into the form

g(τ) =

{ √
τ − 1 arcsin 1√

τ
τ ≥ 1

√
1−τ
2

[

log 1+
√
1−τ

1−
√
1−τ − iπ

]

τ < 1
(6.22)

The parameters τi = 4M2
i /M

2
H and λi = 4M2

i /M
2
Z (i = f,W ) are defined in terms of the

corresponding masses of the heavy loop particles. The W loop dominates in the intermediate
Higgs mass range, and the heavy fermion loops interfere destructively.

BR(H)
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Abbildung 6.2: The Higgs boson branching ratios (upper) and the total width (lower) as a
function of the Higgs boson mass. Plote made with HDECAY. Now we know that the Higgs
boson mass is MH = 125.09 GeV.

Figs.6.2 show the Higgs boson branching ratios and total width as a function of the Higgs
boson mass. One can infer from the figures that the total Higgs boson width is rather small,
it is 4.108·10−3 GeV, for MH = 125.09 GeV.
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6.5 Higgs boson production at the LHC

There are several Higgs boson production mechanisms at the LHC.

- Gluon fusion: The dominant production mechanism for Standard Model Higgs bosons at
the LHC is gluon fusion

�

0

t; b;

~

t;

~

b

g

g

pp→ gg → H . (6.23)

In the Standard Model it is mediated by top and bottom quark loops. The QCD corrections
(the next-to leading order calculation involves 2-loop diagrams!) have been calculated and
turn out to be large. They are of the order 10-100%; see Fig. 6.3, which shows the NLO
K-factor, i.e. the ratio of the NLO cross section to the leading order (LO) cross section as
a function of the Higgs boson mass for the virtual and real corrections.

K(pp→H+X)

√s = 14 TeV

µ = M = M
H

M
t
 = 175 GeV

CTEQ4

K
tot

K
gg

K
virt

K
qq

K
gq

M
H

 [GeV]
50 100 200 500 1000

-0.5

0

0.5

1

1.5

2

2.5

3

Abbildung 6.3: The K factor for the gluon fusion process as a function of the Higgs boson
mass.

Due to the inclusion of the NLO QCD corrections the scale dependence of the gluon fusion
cross section is decreased, cf. Fig. 6.4.

The next-to-next-to leading order (NNLO) corrections have been calculated in the limit
of heavy top quark masses (MH ≪ mt). They lead to a further increase of the cross section
by 20-30%. The scale dependence is reduced to ∆ <∼ 10 − 15%. Resummation of the soft
gluons adds another 10%. More recently, also the N3LO corrections have been calculated in
the heavy top quark mass limit. These corrections range at the level of a few percent.
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Abbildung 6.4: The scale dependence of the gluon fusion cross section for two different Higgs
masses.

- WW/ZZ fusion: Higgs bosons can be produced in the WW/ZZ fusion processes

h;H

q

q

W;Z

W;Z

pp→ W ∗W ∗/Z∗Z∗ → H . (6.24)
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The QCD corrections have been calculated and amount up to ∼ 10%. In the meantime more
higher order QCD and EW corrections have been calculated. (Not treated here.)

- Higgs-strahlung: Higgs bosons production in Higgs-strahlung [Glashow et al.; Kunszt et al.]

proceeds via

h;H

�q

q

W;Z

W;Z

pp→W ∗/Z∗ →W/Z +H . (6.25)

The QCD corrections are ∼ 30%. The NNLO QCD corrections add another 5-10%. The
theoretical error is reduced to about 5%. However, in the ZH final state there is also a
sizeable contribution from the process gg → ZH with about ∼ 20% to the total cross
section. Recently the NLO QCD corrections to gg → ZH have been calculated in the heavy-
top-quark limit [185]. They increase this contribution significantly.

- Associated Production: Higgs bosons can also be produced in association with top and
bottom quarks

�

0

q

�q

g

t=b

�

t=

�

b

�

0

g

g

t=b

�

t=

�

b

pp→ tt̄/bb̄+H . (6.26)

The NLO QCD corrections to associated top production increase the cross section at the
LHC by 20%.

For all the production and background processes a lot of progress has been made in the
last years on the calculation of the higher order (HO) QCD and EW corrections. They are
not subject of this lecture, though. For details, see the corresponding literature.

Fig. 6.5 shows the production cross section in pb as a function of the Higgs boson mass.

6.6 Higgs Boson Discovery

The main Higgs discovery channels are the γγ and ZZ∗ final states. The decay into γγ final
states has a very small branching ratio, but is very clean. (CMS and ATLAS have an excellent
photon-energy resolution. Look for narrow γγ invariant mass peak, extrapolate background
into the signal region from thresholds.). The ZZ∗ final state is the other important search
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Abbildung 6.5: Higgs boson production cross sections as a function of the Higgs mass for 13
and 14 TeV c.m. energy at the LHC including the most up-to-date higher-order corrections as
indicated at the shown cross section bands. The size of the bands reflects the total estimated
theoretical uncertainties. From LHC Higgs XS WG report 2016, arXiv:1610.07922.

channel. For MH = 125.09 GeV it is an off-shell decay. It leads to a clean 4 lepton (4l) final
state from the decay of the Z bosons. Also the WW final state is off-shell. The final state
signature includes missing energy from the neutrinos of the W boson decays. The bb̄ final
state is exploited as well. It has the largest branching ratio, but suffers from a large QCD
background. Finally, the ττ channel is also used.

The experiments give the best fit values to the reduced µ values in the final state X .
These are the production rate times branching ratio into the final state X = γ, Z,W, b, τ
normalized to the corresponding value for a SM Higgs boson,

µ =
σprod ×BR(H → XX)

(σprod ×BR(H → XX))SM
. (6.27)

In case the discovered Higgs boson is a SM Higgs boson they are all equal to 1. Figure 6.6
shows the µ values reported by the LHC experiments. At present the the various final states
suffer from uncertainties that leave room for beyond the SM (BSM) physics.

The main discovery channels for the 125 GeV Higgs boson at ATLAS and CMS, i.e. the
photon and the Z boson final states, are shown in Fig. 6.7.

6.7 Higgs boson couplings at the LHC

In principle the strategy to measure the Higgs boson couplings is to combine various Higgs
production and decay channels, from which the couplings can then be extracted. For example,
the production of the Higgs boson in W boson fusion with subsequent decay into τ leptons,
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Abbildung 6.6: Best fits for the µ values reported by ATLAS and CMS.
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Abbildung 6.7: The main Higgs discovery channels: Upper: The photon final state, here
shown for the ATLAS experiment [ATLAS-CONF-2013-12]. Lower: The ZZ∗ final state,
here shown for the CMS experiment [CMS-PAS-HIG-13-002].

Fig. 6.8, is proportional to the partial width into WW and the branching ratio into ττ .
Combination with other production/decay channels and the knowledge of the total width
allow then to extract the Higgs couplings. The problem at the LHC, however, is that the total
width, which is small for a SM 125 GeV Higgs boson, cannot be measured without model-
assumptions, and also not all final states are experimentally accessible. Therefore without
applying model-assumptions only ratios of couplings are measureable.

The theoretical approach is to define an effective Lagrangian with modified Higgs coup-
lings. In a first approach the couplings are modified by overall scale factors κi and the tensor
structure is not changed. With this Lagrangian the signal rates, respectively µ values, are
calculated as function of the scaling factors, µ(κi). These are then fitted to the experimen-
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W
H

τ

τ

• •

Abbildung 6.8: Feynman diagram for the production of a Higgs boson inW boson fusion with
subsequent decay into ττ . It is proportional to the partial width ΓWW and the branching
ratio into ττ , BR(H → ττ).

tally measured µ values. The fits provide then the κi values. Such a theoretical Lagrangian
for the SM field content with a scalar particle h looks like

L = Lh − (M2
WW

+
µ W

µ− +
1

2
M2

ZZµZ
µ)[1 + 2 κV

h

v
+O(h2)]

−mψi
ψ̄iψi[1 + κF

h

v
+O(h2)] + ... (6.27)

It is valid below the scale Λ where new physics (NP) becomes important. It implements
the electroweak symmetry breaking (EWSB) via Lh and the custodial symmetry through
κW = κZ = κV . Furthermore, there are no tree-level flavour changing neutral current (FCNC)
couplings as κF is chosen to be the same for all fermion generations and does not allow for
transitions between fermion generations. The best fit values for κf and κV are shown in
Fig. 6.9.

If the discovered particle is the Higgs boson the coupling strengths are proportional to
the masses (squared) of the particles to which the Higgs boson couples. This trend can be
seen in the plot published by CMS, see Fig. 6.10.

6.8 Higgs Boson Quantum Numbers

The Higgs boson quantum numbers can be extracted by looking at the threshold distributions
and the angular distributions of various production and decay processes. The SM Higgs boson
has spin 0, positive parity P and is even under charge conjugation C. From the observation
of the Higgs boson in the γγ final state one can already conclude that it does not have spin
1, due to the Landau-Yang theorem, and that it has C = +1, assuming charge invariance.
However, these are theoretical considerations and have to be proven also experimentally.

The theoretical tools to provide angular distributions for a particle with arbitrary spin
and parity are helicity analyses and operator expansion. Let us look as an example at the
Higgs decay into ZZ∗, and the Z bosons subsequently decay into 4 leptons,

H → ZZ(∗) → (f1f̄1)(f2f̄2) . (6.28)

The decay is illustrated in Fig. 6.11. The angle ϕ is the azimuthal angle between the decay
planes of the Z bosons in the H rest frame. The θ1 and θ2 are the polar angles, respectively,
of the fermion pairs in, respectively, the rest frame of the decaying Z boson.
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Abbildung 6.9: The best fit values for κf and κV by ATLAS [Phys. Lett. B726 (2013) 88]
(upper) and CMS [CMS-PAS-HIG-13-005] (lower).

For the SM the double polar angular distribution reads

1

Γ′
dΓ′

d cos θ1d cos θ2
=

9

16

1

γ4 + 2

[
γ4 sin2 θ1 sin

2 θ2

+
1

2
(1 + cos2 θ1)(1 + cos2 θ2)

]

(6.28)

and the azimuthal angular distribution is given by

1

Γ′
dΓ′

dφ
=

1

2π

[

1 +
1

2

1

γ4 + 2
cos 2φ

]

(6.29)

The verification of these distributions is a necessary step for the proof of the 0+ nature of
the Higgs boson.
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Abbildung 6.10: Coupling strengths as function of the mass of the particles coupled to the
Higgs boson, CMS [CMS-PAS-HIG-14-009]

The calculation of the azimuthal angular distribution delivers a different behaviour for a
scalar and a pseudoscalar boson:

0+ : dΓ/dφ ∼ 1 + 1/(2γ4 + 4) cos 2φ
0− : dΓ/dφ ∼ 1− 1/4 cos 2φ

(6.30)

Here γ2 = (M2
H−M2

∗−M2
Z)/(2M∗MZ) andM∗ is the mass of the virtual Z boson. Figure 6.12

shows how the azimuthal angular distribution can be exploited to test the parity of the
particle. A pseudoscalar with spin-parity 0− shows the opposite behaviour in this distribution
than the scalar, which is due to the minus sign in front of cos 2φ in Eq. (6.30). The threshold
behaviour on the other hand can be used to determine the spin of the particle. We have for
spin 0 a linear rise with the velocity β,

dΓ[H → Z∗Z]

dM2
∗

∼ β =
√

(MH −MZ)2 −M2
∗ /MH . (6.31)

A spin 2 particle, e.g. shows a flatter rise, ∼ β3, cf. Fig. 6.13.

The experiments cannot perform an independent spin-parity measurement. Instead they
test various spin-parity hypotheses. Various non-SM spin-parity hypotheses have been ruled
out at more than 95% confidence level (C.L.), see e.g. Figs. 6.14 and 6.15.

6.9 Determination of the Higgs self-interactions

In order to fully establish the Higgs mechanism as the one responsible for the generation
of particle masses without violating gauge principles, the Higgs potential has to be recon-
structed. This can be done once the Higgs trilinear and quartic self-interactions have been
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Abbildung 6.11: The decay H → ZZ(∗) → (f1f̄1)(f2f̄2).

measured. The trilinear coupling λHHH is accessible in double Higgs production. The quartic
coupling λHHHH is to be obtained from triple Higgs production.

6.9.1 Determination of the Higgs self-couplings at the LHC

The processes for the extraction of λHHH at the LHC are gluon fusion into a Higgs pair,
double Higgs strahlung, double WW/ZZ fusion and radiation of a Higgs pair off top quarks.

gluon fusion: gg → HH
double Higgs-strahlung: qq̄ → W ∗/Z∗ → W/Z +HH
WW/ZZ double Higgs fusion: qq → qq +WW/ZZ → HH
associated production: pp → tt̄HH

(6.32)

The dominant gluon fusion production process proceeds via triangle and box diagrams, see
Fig. 6.16.

Due to smallness of the cross sections, cf. Fig. 6.17, and the large QCD background the
extraction of the Higgs self-coupling at the LHC is extremely difficult. There is an enormous
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Abbildung 6.12: The azimuthal distribtuion for the H → ZZ∗ → 4l decay for the SM scalar
Higgs (black) and a pseudoscalar (red). [Choi,Mühlleitner,Zerwas]
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Abbildung 6.13: The threshold distribution for the H → ZZ∗ → 4l decay for the SM spin-0
Higgs (black) and a spin-2 particle (red).[Choi,Mühlleitner,Zerwas]

theoretical activity to determine the production processes with high accuracy including HO
corrections and to develop strategies and observables for the measurement of the di-Higgs
production processes and the trilinear Higgs self-couplings.

6.10 Summary

The measurements of the properties of the discovered particle have identified it as the Higgs
boson. CERN therefore officially announced in a press release of March 2013, that the disco-
vered particle is the Higgs boson, cf. Fig. 6.18. This lead then to the Nobel Prize for Physics
in 2013 to Francois Englert and Peter Higgs.

The SM of particle physics has been very successful so far. At the experiments it has been
tested to highest accuracy, including higher order corrections. And with the discovery of the
Higgs particle we have found the last missing piece of the SM of particle physics. Still there
are many open questions that cannot be answered by the SM. To name a few of them

1. In the SM the Higgs mechanism is introduced ad hoc. There is no dynamical mechanism
behind it.

2. In the presence of high energy scales, the Higgs boson mass receives large quantum
corrections, inducing the hierarchy problem.

3. We have no explanation for the fermion masses and mixings.

4. The SM does not contain a Dark Matter candidate.

5. In the SM the gauge couplings do not unify.

6. The SM does not incorporate gravity.

7. The CP violation in the SM is not large enough to allow for baryogenesis.

8. ...
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Abbildung 6.14: Spin-parity hypotheses tests by ATLAS. Details in Phys. Lett. B726 (2013)
120.

We therefore should rather see the SM as an effective low-energy theory which is embedded
in some more fundamental theory that becomes apparent at higher scales. The Higgs data
so far, although pointing towards a SM Higgs boson, still allow for interpretations within
theories beyond the SM. These BSM theories ideally solve (some of) the problems of the
SM. They are subject of further lectures.
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Abbildung 6.16: The diagrams which contribute to the gluon gluon fusion process gg → HH .
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Abbildung 6.17: Di-Higgs production processes at the LHC with c.m. energy 14 TeV, inclu-
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Abbildung 6.18: CERN press release.
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Kapitel 7

Appendix

7.1 Addendum: Mathematische Hintergrundinforma-

tionen

7.1.1 Gruppen

Sei ein Paar (G, ∗) mit einer Menge G und einer inneren zweistelligen Verküpfung/Gruppen-
multiplikation. ∗ : G × G → G, (a, b) 7→ a ∗ b heißt Gruppe, wenn folgende Axiome erfüllt
sind

1. Die Gruppe ist abgeschlossen. D.h. wenn g, h ǫ G ⇒ g ∗ h ǫ G.

2. Assoziativität: (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3).

3. ∃ Einselement e mit der Eigenschaft g ∗ e = e ∗ g = g ∀ g ǫ G.

4. Zu jedem g gibt es ein Inverses g−1 mit g−1 ∗ g = g ∗ g−1 = e.

Abelsche Gruppe: Eine Gruppe heißt abelsch, wenn g ∗ h = h ∗ g.
Kontinuierliche Gruppen: Sie besitzen unendlich viele Elemente und werden durch n Pa-
rameter beschrieben. Bei Liegruppen ist n endlich. Alle einparametrigen Liegruppen sind
abelsch. Typisches Beispiel: U(1) mit den Elementen eiφ und φ als Parameter.

7.1.2 Algebra

Ein linearer Raum (Vektorraum) wird zu einer Algebra A, wenn eine binäre Operation
(Multiplikation) zweier Elemente m,n existiert, so daß mn ∈ A. Es gelten die Linea-
ritätsbeziehungen (k,m, n ∈ A)

k(c1m+ c2n) = c1km+ c2kn

(c1m+ c2n)k = c1mk + c2nk . (7.0)

Dabei sind c1, c2 reelle (komplexe) Zahlen. Man spricht je nach Fall von reeller (komplexer)
Algebra.

Eine Algebra heißt kommutativ, wenn

mn = nm . (7.1)
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Sie heißt assoziativ, wenn

k(mn) = (km)n . (7.2)

Sie heißt Algebra mit Einselement, wenn sie ein Einselement 1 besitzt mit

1m = m1 = m . (7.3)

Sei A eine assoziative Algebra mit Einselement und B ⊂ A eine Menge von Elementen b1, b2

etc. Die Algebra heißt von B erzeugt, wenn jedes mǫA durch ein Polynom endlichen Grades
in den Elementen bi geschrieben werden kann,

m = c1+

p
∑

k=1

∑

i1,i2,...,ik

ci1i2...ikb
i1bi2 ...bik , (7.4)

wobei die Koeffizienten ci1i2...ik komplexe Zahlen sind. Die Elemente der Menge B heißen
Generatoren von A. Das Einselement gehört nicht zu den Generatoren.

7.1.3 Clifford-Algebren

Eine Clifford-Algebra CN wird von N Generatoren ξ1, ξ2, ..., ξN erzeugt, für die

ξaξb + ξbξa = 2δab

mit a, b = 1, ..., N .

Die Dimension der Clifford-Algebra CN ist 2N . Es existiert ein enger Zusammenhang zwi-
schen Clifford-Algebren und den Quantisierungsbedingungen für Fermionen.

Im allgemeinen lassen sich Clifford-Algebren für beliebige symmetrische Metriken gmn

definieren. So gilt insbesondere für die pseudoeuklidische Metrik

gab = diag(1, 1, ..., 1
︸ ︷︷ ︸

N

,−1, ...,−1
︸ ︷︷ ︸

M

) , (7.5)

Clifford-Algebra CN,M : {Γm,Γn} = 2gmn1.

Die Anzahl der Generatoren ist d = N +M .

7.1.4 Liealgebren

Eine Algebra ist ein Vektorraum, der von den Generatoren A,B,C, ... aufgespannt wird:
beliebige Linearkombinationen von Generatoren ergeben wieder Generatoren. Eine Algebra
verfügt über ein Produkt zwischen den Generatoren. Im Fall der Liealgebra ist das Produkt
der Kommutator

A ◦B := [A,B] , (7.6)

mit den folgenden Eigenschaften

A ◦B = −B ◦ A (7.7)

(A ◦B) ◦ C + (C ◦ A) ◦B + (B ◦ C) ◦ A = 0 . (7.8)

Liealgebren sind nicht assoziativ. Die Beziehung (7.8) heißt Jacobi-Identität.


